期刊文献+

热处理温度对聚酰亚胺基炭纤维结构性能影响 被引量:2

Effect of heat treatment temperature on the microstructure and properties of polyimide-based carbon fibers
下载PDF
导出
摘要 以聚酰亚胺(PI)纤维为前驱体,经800—2800℃连续高温处理,制备出不同性能的聚酰亚胺基炭(石墨)纤维。采用元素分析、SEM、HR-TEM、Raman、纤维强力仪、电阻率仪等分析手段研究热处理温度对炭纤维(CF)元素含量、结构形貌、力学性能、传导性能等方面的影响。结果表明,随着热处理温度的升高,聚酰亚胺基炭纤维中碳含量从78.97%(800℃)提高到99.72%(2800℃),非碳原子含量降低;聚酰亚胺基炭纤维表面缺陷数目增加且尺寸增大。同时,纤维的微观结构也从二维乱层石墨结构向有序的三维层状结构发展,表现为石墨化程度的提高及石墨微晶尺寸的增大;炭纤维拉伸强度先增加后降低,最大拉伸强度924.4MPa,断裂伸长率降低,电阻率减小,热导率增加,2800℃石墨化处理后纤维热导率为228.4W·m^-1·K^-1,是800℃处理后的50.4倍。 Polyimide (PI) -based carbon fibers with different properties were prepared by carbonization of PI fibers at 800 ℃, fol- lowed by heat treatment from 800 to 2 800 ℃. The effect of heat treatment temperature (HTT) on elemental composition, surface morphology, mechanical properties, and the thermal and electrical conductivities of PI-based carbon fibers were investigated by ele- mental analysis, SEM, HRTEM, Raman spectroscopy, mechanical testing, and electrical and thermal conductivity measurements. Results showed that as a result of HTT the carbon content increased from 78.97% to 99.72%, the tensile strength exhibited a maxi- mum of 924.4 MPa, and the degree of graphitization and the size of graphite crystallites were both increased. Distinct reductions in strain-to-failure and electrical resistivity were observed with increasing HTT. The thermal conductivity can reach 228.4 W· m^-1· K^-1 after heat treatment at 2 800℃. PI fiber may be a good precursor for carbon fibers with a high thermal conductivity.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2014年第6期461-466,共6页 New Carbon Materials
基金 中国科学院炭材料重点实验室开放基金(KLCMKFJJ1402)~~
关键词 PI基炭纤维 石墨化程度 热处理温度 传导性能 PI-based carbon fibers Degree of graphitization Heat treatment temperature Conductivity property
  • 相关文献

参考文献19

  • 1李同起,胡子君.定向高导热碳材料及其热管理结构设计[J].宇航材料工艺,2007,37(1):16-18. 被引量:11
  • 2Druma A M, Alam M K, Druma C. Analysis of thermal conduc- tion in carbon foams [ J ]. International Journal of thermal Sci- ence, 2004, 5: 689-695.
  • 3Che J W, Cagin T, A Goddard W. Thermal conductivity of car- bon nanotubes [ J ]. Nanotechnology, 2000, 11 : 65-69.
  • 4Adams P M, Katzman H A, Rellick G S, et al. Characterization of high thermal conductivity carbon fiber and a self-reinforced graphite panel[ J]. Caron, 1998,36 (3) : 233-245.
  • 5Murakami M, Nishiki K, Knakamura K, et al. Yoshmura. high- quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon, 1992, 30(2): 255-262.
  • 6赵根祥,邱海鹏.聚酰亚胺基碳纤维的开发[J].合成纤维工业,2000,23(1):71-74. 被引量:5
  • 7Gajanan S B, RenataSch W. Conversion of a copolyimide fiber into carbon fiber[ C ]. 23rd biennial conference on carbon pennstate university, USA. The American Carbon Society, 1997, 406.
  • 8Seung K P, Richard J F. Dry-jet wet spinning of aromatic poly- amide acid fiber using chemical imidization[J]. Polymer, 2001, 42 : 10087-10093.
  • 9Zhang Q H, Dai M, Ding M X, et al. Mechanical properties of BPDA-ODA polyimide fibers [ J ]. European polymer journal, 2004, 40( 11 ) : 2487-2493.
  • 10Tuinstra F, Koenig J L. Raman spectrum of graphite[ J]. Jour- nal of Chemical Physics, 1970, 53(3) : 1126-30.

二级参考文献59

共引文献136

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部