期刊文献+

Fabrication of AgA u alloy-TiO_2 core-shell nanoparticles and their photocatalytic properties

Fabrication of AgA u alloy-TiO_2 core-shell nanoparticles and their photocatalytic properties
原文传递
导出
摘要 In this paper, for improving the photocatalytic efficiency of titania(TiO2) nanoparticles(NPs), Ag Au alloy-TiO2 core-shell NPs are fabricated via a sol-gel(SG) process in the presence of Ag Au alloy NPs with block copolymer shells as templates. The photocatalytic activities of the Ag Au-TiO2 NPs on the photodecomposition of methylene blue(MB) are investigated. The Ag Au-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity. In this paper, for improving the photocatalytic efficiency of titania(TiO2) nanoparticles(NPs), Ag Au alloy-TiO2 core-shell NPs are fabricated via a sol-gel(SG) process in the presence of Ag Au alloy NPs with block copolymer shells as templates. The photocatalytic activities of the Ag Au-TiO2 NPs on the photodecomposition of methylene blue(MB) are investigated. The Ag Au-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.
出处 《Optoelectronics Letters》 EI 2015年第1期1-4,共4页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.51173069 and 51473068)
关键词 二氧化钛纳米粒子 银金合金 纳米TIO2 光催化性能 制备 AGA 金纳米颗粒 光催化活性 photocatalytic titania coated copolymer irradiation methylene shells photocatalyst ultraviolet template
  • 相关文献

参考文献17

  • 1M. K. Seery, R. George, P. Floris and S. C. Pillai, Journal of Photochemistry Photobiology A: Chemistry 189, 258 (2007).
  • 2E. Grabowska, A. Zaleska, S. Sorgues, M. Kunst, A. Etcheberry, C. C. Justin and H. Remita, Journal of Physical Chemistry C 117, 1955 (2013).
  • 3R. Huang, A. Zhu, Y. Gong, Q. Zhang and Q. Liu, Industrial & Engineering Chemistry Research 52, 7432 (2013).
  • 4D. Wodka, E. Bielanska, R. P. Socha, M. E. Wodka, J. Gurgul, P. Nowak, P. Warszynski and I. Kumakir, Applied Materials Interfaces 7, 1945 (2010).
  • 5GAO Hong-sheng, WANG Zhen-zhen, XIE Yi-yang, GENG Zhao-xin, KAN Qiang, WANG Chuan-xia, YUAN Jun and CHEN Hong-da, Journal of Optoelectronics·Laser 25, 1338 (2014).
  • 6QI Jian-xia, Journal of Optoelectronics' Laser 25, 282 (2014).
  • 7C. Su, L. Liu, M. Zhang, Y. Zhang and C. Shao, Cryst. Eng. Comm. 14, 3989 (2012).
  • 8X.-F. Wu, H.-Y, Song, J.-M. Yoon, Y.-T. Yu and Y.-F. Chen, Langmuir 25, 6438 (2009).
  • 9H. Liu, K. Sun, J. Zhao, R. Guo, M. Shen, X.- Y. Cao, G.-X. Zhang and x. Y. Shi, Colloids and Surfaces A 405, 22 (2012).
  • 10S. J. Guo, S. J. Dong and E. Wang, Journal of Physical Chemistry C 113, 5485 (2009).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部