期刊文献+

基于梯形算子的AFM驱动器非对称迟滞性校正 被引量:8

Asymmetric hysteresis calibration of AFM actuator based on keystone operator
下载PDF
导出
摘要 原子力显微镜(AFM)通常采用压电陶瓷(PZT)作为驱动器以实现纳米尺度的观测和操作。然而,PZT自身的迟滞非线性会对AFM观测质量和操作精度产生很大影响。基于Prandtl-Ishlinskii(PI)模型的前馈控制方法可对PZT的迟滞非线性进行补偿,但传统PI模型无法消除PZT的非对称迟滞性的影响。针对这个问题,提出一种基于梯形算子的非对称迟滞模型,并可用系统辨识方法获取逆模型参数,该方法可有效实现具有非对称迟滞特性驱动器的前馈补偿控制。AFM系统实验证明,该模型可有效减小非对称迟滞性导致的建模误差,基于该模型的前馈迟滞补偿控制可有效提高AFM的扫描成像质量。 Piezoelectric( PZT) actuator is often used in atomic force microscope to realize nano-scale observation and manipulation.However,the intrinsic hysteresis non-linearity of PZT strongly affects observation quality and manipulation accuracy. Prandtl-Ishlinskii( PI) model based feedforward controller can compensate the hysteresis non-linearity of PZT,but the conventional PI model cannot eliminate the effect of asymmetric hysteresis. Aiming to solve the problem,an asymmetric hysteresis model based on keystone operator is proposed. Parameters of inverse model are obtained through system identification method,and the feedforward calibration is implemented based on the inverse model. Experiment in AFM system shows that modeling errors caused by asymmetric hysteresis are effective reduced by the proposed hysteresis model,and imaging quality of the custom-built AFM is improved by feedforward hysteresis compensation based on the model.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第1期32-39,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金青年基金(61304251) 国家863计划(2012AA041204) 中国科学院科研装备研制(YZ201245)资助项目
关键词 非对称PI模型 梯形算子 原子力显微镜 压电陶瓷 迟滞性前馈校正 逆模型直接辨识 asymmetric PI model keystone operator atomic force microscope piezoelectric ceramic feedforward hysteresis calibration directly identify inverse model
  • 相关文献

参考文献22

  • 1KROHS F, ONAL C, sITrI M, et al. Towards automa- ted nanoassembly with the atomic force microscope: A versatile drift compensation procedure [ J ]. Journal of Dy- namic Systems, Measurement, and Control, 2009, 131 (6) : 061106.
  • 2焦念东,刘连庆,田孝军,王阳,席宁,董再励,王越超.具有力觉与视觉反馈的交互式纳米操作系统[J].机器人,2006,28(3):279-284. 被引量:4
  • 3张江波,朱涛,王越超,谈大龙.一种具有纳米定位精度的四自由度微动平台的研制[J].机器人,2003,25(3):213-216. 被引量:1
  • 4王学亮,李佩玥,郑楠,崔洋.运放对压电陶瓷驱动电路系统精度影响的研究[J].电子测量技术,2014,37(10):33-36. 被引量:10
  • 5陈俊,徐志伟,陈杰.压电驱动器驱动电源设计[J].国外电子测量技术,2014,33(4):48-53. 被引量:15
  • 6ANG W T, KHOSLA P K, RIVIERE C N. Feedforward controller with inverse rate-dependent model for piezoe- lectric actuators in trajectory-tracking applications [ J ]. IEEE/ASME Transactions on Mechatronics, 2007, 12 (2) : 134-142.
  • 7王湘江,王兴松.迟滞动态模型辨识[J].仪器仪表学报,2009,30(5):1042-1048. 被引量:5
  • 8YEN P L, YAN M T, CHEN Y. Hysteresis compensation and adaptive controller design for a piezoceramic actuator system in atomic force microscopy [ J ]. Asian Journal of Control, 2012, 14(4) : 1012-1027.
  • 9LEANG K K, DEVASIA S. Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compen- sation in afm piezoactuators [ J ]. IEEE Transactions on Control Systems Technology, 2007, 15 (5): 927-935.
  • 10IYER R V, TAN X B. Control of hysteretic systems through inverse compensation[ J]. IEEE Contrl Systems, 2009, 29(1): 83-99.

二级参考文献57

  • 1王学亮,巩岩.光刻物镜中压电陶瓷驱动器的动态性能研究[J].光子学报,2012,41(9):1071-1075. 被引量:6
  • 2王湘江,王兴松.超磁致伸缩驱动器建模及其迟滞补偿[J].仪器仪表学报,2007,28(5):812-819. 被引量:7
  • 3MAYERFOYZ I. Mathematical models of hysteresis and their applications, a volume in the Elsevier series in electromagnetism[ C]. 2003 Elsevier academic press an imprint of Elsevier.
  • 4ZHOU X, ZHAO J, SONG G, et al. Preisach modeling of hysteresis and tracking control of a Thunder actuator system[ C]. Smart Structures and Materials 2003, 2003, (5049) :112-125.
  • 5LI F, MAO J Q,LI CH, et al. Modeling of hysteresis for a smart actuator by using the Preisach (P) operator[ C]. Proceedings of the 5Ih World Congress on Intelligent Control and Automation, 2004:207-211.
  • 6BELBAS S A, MAYERGOYZ I D. Hadamard-like derivatives in Preisach modeling and control. Physica B, 2006, ( 372 ) : 87-90.
  • 7SU CH Y, TAN Y H,STEPANENKO Y. Adaptive control of a class of nonlinear systems preceded by an un- known backlash-like hysteresis [ C ]. Proceedings of the 39th IEEE Conference on Decision and Control, 2000: 1459-1464.
  • 8CORRADINI M L, ORLANDO G, PARLANGELI G. A vsc approach for the robust stabilization of nonlinear plants with uncertain nonsmooth actuator nonlinearities : a unified framework[ C ]. IEEE Transactions on Automatic Control, 2004,49(5 ) :807-813.
  • 9RICHTER H, MISAWA E A, LUCCA D A, et al. Modeling nonlinear behavior in a piezoelectric actuator [ J ]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2001, (25) : 128-137.
  • 10WOLBANK TH M, WOEHRNSCHIMME R, HAUSER H, et al. Modeling inverter-fed induction machines including dynamic magnetic hysteresis [ J ]. Journal of Magnetism and Magnetic Materials, 2002, (242-245): 1214-1217.

共引文献32

同被引文献68

  • 1林旭东,刘欣悦,王建立,卫沛锋,王富国.基于干涉仪测量的变形镜面形展平标定研究[J].光子学报,2012,41(5):511-515. 被引量:6
  • 2节德刚,孙立宁,曲东升,王力,蔡鹤皋.压电陶瓷微位移系统的模糊PID控制方法[J].哈尔滨工业大学学报,2005,37(2):145-147. 被引量:14
  • 3LIU Y, SHAN J, GABBERT U, et al. Hysteresis and creep modeling and compensation for a piezoelectric actu- ator using a fractional-order Maxwell resistive capacitor approach [J]. Smart Materials and Structures, 2013, 22 (11) :115020.
  • 4WANG D, PENG Y, ZHOU L, et al. Feedforward hys- teresis calibration of piezoelectric actuator in AFM based on inverse model identification[ C]. In Proceedings of the 11 th World Congress on Intelligent Control and Automa- tion. Shenyang,China,2014: 1561-1566.
  • 5OUYANG R, JAYAWARDHANA B. Absolute stabil- ity analysis of linear systems with duhem hysteresis operator[J]. Autematica,2014, 50: 1860-1866.
  • 6ZHOU M L, ZHANG Q,WANG J Y. Feedforward-feed- back hybrid control for magnetic shape memory alloy actu- ators based on the krasnosel "skii-pokrovskii model [ J ]. PIoS one, 2014, 9(5):e97086.
  • 7LI Z, SU C Y, CHAI T. Compensation of hysteresis non- linearity in magnetostrictive actuators with inverse multi- plicative structure for preisach model [ J ]. IEEE Transac- tions on Automation Science and Engineering, 2014, 11(2) : 613-619.
  • 8KIM J H, MENG C H. Visually servoes 3-D alignment of multiple objects with sub-nanometer precision [ J ]. IEEE Transactions on Nanotechnology, 2007,7 ( 3 ) :321-330.
  • 9IYER R V, TAN X B. Control of hysteretic systems through inverse compensation [ J ]. IEEE Contrl Systems, 2009,29(1) : 83-99.
  • 10DONG R L, TAN Y H. A modified prandtl-ishlinskii modeling method for hysteresis [ J ]. Physica B: Con- densed Matter, 2009, 404 (8) : 1336-1342.

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部