期刊文献+

3种芸薹属植物ROH1基因的克隆及分析 被引量:1

Cloning and Analysis of ROH1 from Three Brassica Plants
下载PDF
导出
摘要 [目的]通过PCR和RT-PCR技术从甘蓝、白菜和萝卜中扩增ROH1基因序列,分析该基因的基本特性。[方法]采用生物信息学的相关方法进行分析。[结果]甘蓝、白菜、萝卜ROH1基因没有内含子,甘蓝ROH1基因编码398个氨基酸,白菜和萝卜ROH1基因均编码400个氨基酸,3种植物的ROH1蛋白序列与拟南芥已经公布的ROH1(At1g63930)蛋白氨基酸缺少一段连续的氨基酸序列;ROH1属于DUF793蛋白超家族,它没有跨膜结构域和信号肽,二级结构主要由α-螺旋和无规则卷曲构成。同源比对及功能联想分析发现植物中ROH1非常保守,系统发育分析表明甘蓝、白菜和萝卜的关系最近;结构功能分析发现ROH1可能与BYPASS蛋白和AT4G11300蛋白的功能相似。[结论]为研究DUF793蛋白超家族功能提供参考。 [Objective]The sequences of ROH1 genes were amplified by PCR and RT-PCR from three Brassica plants which are Brassica oleracea,Brassica rape and Raphanus sativus. [Method]Using relevant methods of bioinformatics analyzes. [Result] The results indicated that the g DNA of ROH1 was without introns,ROH1 gene encodes 398 amino acids in Brassica oleracea when it encodes 400 amino acids in the Brassica rape and Raphanus sativus. A continuous period of amino acids was deleted from the ROH1 in the three plants which were compared to ROH1( At1g63930) in Arabidopsis thaliana; ROH1 belonged to DUF793 protein superfamily,and it might not be a transmembrane domain with no a signal peptide. The secondary structure of ROH1 mainly composed of α-helix and random coil constituted. Homologous alignment and function of the association analysis showed that ROH1 was very conservative,and phylogenetic analysis showed that there were closely relationship between Brassica oleracea,Brassica rape and Raphanus sativus; The structure and function analysis found that ROH1 may resemble to BYPASS protein and AT4G11300 protein. [Conclusion] The study provided a reference for the study of function about DUF793 protein super family.
出处 《安徽农业科学》 CAS 2015年第3期18-21,46,共5页 Journal of Anhui Agricultural Sciences
基金 中央高校基本业务费专项经费(XDJK2013C121)
关键词 ROH1基因 基因克隆 DUF793蛋白超家族 ROH1 gene Gene clone DUF793 protein super family
  • 相关文献

参考文献13

  • 1WHYTE J R,MUNRS.Vesiele tethering complexs in membrane traffie[J].Cell Sei,2002,115:2627-2637.
  • 2NOVICK P,FIELD C,SCHEKMAN R.Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway[J].Cell,1980,21:205-215.
  • 3ELIAS M,DRDOVA E,ZIAK D,et al.The exocyst complex in plants[J].Cell Biology International,2003,27:199-201.
  • 4LI S,VAN OS G M,REN S,et al.Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell typespecific exocytosis[J].Plant Physiol,2011,154:1819-1830.
  • 5IVAN KULICH,REX COLE,EDITA DRDOVA,et al.Arabidopsis exocyst subunits SEC8 and EXO70A1and exocyst interactor ROH1are involved in the localized deposition of seed coat pectin[J].New Phytologist,2010,188:618-625.
  • 6魏香,曾宪纲,周海梦.蛋白质结构中卷曲螺旋的研究进展[J].中国生物化学与分子生物学报,2004,20(5):565-571. 被引量:21
  • 7RAGHVENDRA SHARMA,PUSHP PRIYA,MUKESH JAIN.Modified expression of an auxinresponsive rice CCtype glutaredoxin gene affects multiple abiotic stress responses[J].Planta,2013,238:871-884.
  • 8VAN NORMAN J M,FREDERICK R L,SIEBURTH L E.BYPASS1 negatively regulates a root-derived signal that controls plant architecture[J].Current Biology,2004,14:1739-1746.
  • 9KANG Y M,KIM R N,CHO H S,et al.Sliencing of a baypassl homologs results in root-independent plejotmhpjc developmental defects in Nicotiana benthaminaa[J].Plant Mol Biol,2008,68(4/5):423-437.
  • 10LEE D K,VAN NORMAN J M,MURPHY C,et al.In the absence of BYPASSl-related gene function,the bps signal disrupts embryogenesis by an auxin-independent mechanism[J].Development,2012,139(4):805-815.

二级参考文献61

  • 1[1]Crick F H C. The packing of α-helices: simple coiled-coils. Acta Crystallogr, 1953, 6:689 ~ 698
  • 2[2]Hodges R S, Sodek J, Smillie L B, Jurasek L. Tropomyosin: amino acid sequence and coiled-coil structure. Cold Spring Harbor Symp Quant Biol, 1972, 37:299 ~ 310
  • 3[3]Parry D A D, Mareka L N, Steinert P M, Smith T A. A role for tbe lA and L1 rod domain segments in head domain organization and function of intermediate filaments: structural analysis of trichocyte leratin. J Struct Biol, 2002, 137:97 ~ 108
  • 4[4]Sonja A D, Richard A K, Detlef M, Jurgen E, Andrei T A.Contributions of the ionization states of acidic residues to the stability of the coiled coil domain of matrilin-1. FEBS Lett, 1999,446:75 ~ 80
  • 5[5]Lupas A, Miller S, Goldie K, Engel A M, Engel A, Baumeister W.Model structure of the Omp α rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritime. J Mol Biol, 1995, 248: 180~189
  • 6[6]Murphy G A, Spedale E J, Powell S T, Pillrs L, Schultz S C, Chen L.The sir4 C-terminal coiled coil is required for telomeric and mating type silencing in Saccharomyces cerevisiae. J Mol Biol, 2003, 334:769 ~780
  • 7[7]Zon A, Mossink M H, Schoester M, Scheffer G L, Scheper A J,Sonneveld P, Wiemer E A C. Structural domains of vault proteins: a role for the coiled coil domain in vault assembly. Biochem Biophys Res Commun, 2002, 291:535 ~ 541
  • 8[8]Burkhand P, Stetefeld J, Strelkov S V. Coiled coils: a highly versatile protein folding motif. 2001,11(2): 82 ~ 88
  • 9[9]Bruce Y Y. Coiled-coil: stability, specificity, and delivery potential.Adv Drug Deliv Rev, 2002, 54:1113 ~ 1129
  • 10[10]Oakley M G, Kim P S. A buried polar interaction can direct the relative orientation of helices in a coiled coil. Biochemistry, 1998, 37:12603~ 12610

共引文献54

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部