摘要
鉴于广义S变换继承了短时Fourier变换、小波变换和标准S变换的所有优点,同时也弥补了它们存在的不足,具有良好的自适应的独特特性,提出了一种基于广义S变换的滚动轴承故障诊断方法,并与传统的短时Fourier变换、Wgner-Ville分布、小波变换、标准S变换等时频分析方法进行了对比分析。仿真研究表明,广义S变换具有明显的优势,能灵活地通过调节参数来自适应地调节窗函数的宽度,以便达到最佳的时频分辨率。最后,滚动轴承故障实验研究进一步验证了提出的方法的有效性。提出的方法能有效地反映不同轴承故障的特征频率,为滚动轴承故障诊断提供了一种有效的方法。
Based on the unique features of the generalized S transform ( GST) , i-e. GST has good self-adaptivity, inherits all the advantages of short time Fourier transform, wavelet transform and standard S transform, and makes up for their shortcomings. A rolling bearing fault diagnosis method based on generalized S transform was proposed. The proposed method was compared with the traditional time-frequency distribution method such as short time Fourier transform, Wigner-Ville distribution, wavelet and standard S transform. The simulation results show that the generalized S transform has obvious advantage, can be flexibly adjust the parameters adaptively to adjust the width of window function in order to achieve the optimum frequency resolution. Finally, the experiment of rolling beraing fur-ther validates the effectiveness of the proposed method. The proposed method can accurately reveal the rolling bearing fault features fre-quency.
出处
《机床与液压》
北大核心
2015年第1期181-184,共4页
Machine Tool & Hydraulics
基金
国家自然科学基金项目(51075372
50775208)
江西省教育厅科技计划项目(GJJ12405)
湖南科技大学机械设备健康维护湖南省重点实验室开放基金项目(201204)
关键词
广义S变换
故障诊断
滚动轴承
时频分辨率
Generalized S transformation
Fault diagnosis
Rolling bearing
Time-frequency resolution