期刊文献+

旋磁激励式圆形压电振子发电机 被引量:4

Piezodisc energy generator excited by rotary magnets
下载PDF
导出
摘要 为满足旋转机构监测系统自供电需求,设计旋磁激励式圆形压电振子发电机,并着重研究磁铁尺寸、磁铁间距、压电振子厚度等对压电振子一次受激产生的最大输出电压及总能量的影响规律。结果表明,其它条件确定时,增加磁铁尺度或减小磁铁间距均可有效提高发电机输出电压及有效速带宽度。试验获得输出电压大于12 V 的转速范围为100~2850 r/min。压电振子厚度对输出电压及总发电量均有较大影响,低转速时采用薄压电振子、高转速时采用厚压电振子有助于提高发、供电能力。0.2mm、0.4mm、0.6mm 厚压电振子最佳转速分别为707.5 r/min、1301.8 r/min、2490.4 r/min,0.2mm 厚压电振子一次受激产生的电能/功率分别为0.4mm、0.6mm 压电振子的3.1/1.7倍、6.4/2.0倍。以输出5 V 供电电压为例,912 r/min 时0.4mm 厚压电振子输出电能为0.6mm 厚压电振子的5倍,1710 r/min 时0.6mm 厚压电振子的输出电能为0.4mm 压电振子的1.7倍。 To meet the demands of self-powered monitoring system for rotating machine, a novel piezodisc generator excited by the coupling effect between rotating magnets and those fixed on piezodisc was presented. The influence of system factors on the maximal voltage and total energy generated from the piezodisc under one excitation was investigated. The research results show that both the output voltage and effective speed-band can be enhanced with increasing magnet size or decreasing the distance between magnets. In this way, output voltage beyond 12 V can be obtained at rotating speed range of 100 ~ 2850 r/min. Besides, the thickness of the piezodise exerts also great influence on the generated voltage and electric energy. Both the maximal voltage and total electric energy can be enhanced by using a thin piezodisc at low speed or a thick piezodisc at high speed. The optimal speeds for the piezodiscs of 0. 2/0. 4/0. 6 mm thickness to obtain maximal energy are 707.5 r/min, 1301.8 r/min and 2490.4 r/min respectively. At the optimal speed and under one excitation, the obtained energy/power by the 0.2mm thickness piezodisc are 3.1/1.7 and 6.4/2.0 times those by the 0.4 mm and 0.6 mm thickness piezodiscs. Taking 5 V output voltage for example, the usable energy generated by the 0.4 mm thickness piezodisc is 5 times that by the 0.6 mm thickness piezodisc at 912 r/min. While, the usable energy by the 0.6 mm thickness piezodisc is 1.7 times that by the 0.4 mm thickness piezodisc at 1710 r/min.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第2期114-118,共5页 Journal of Vibration and Shock
基金 国家自然基金资助项目(51277166 51075371 51377147) 浙江省新苗人才计划项目(2013R404071 2013R404066 2013R404011)
关键词 压电 发电 旋转激励 磁力耦合 piezoelectricity energy generation rotating excitation magnetic coupling
  • 相关文献

参考文献13

  • 1Saadon S,Sidek O.A review of vibration-based MEMS piezoelectric energy harvesters[J].Energy Conversion and Management,2011,52:500-504.
  • 2Kim H S,Kim J H,Kim J.A Review of piezoelectric energyharvesting based on vibration[J].International Journal of Precision Engineering and Manufacturing,2011,12(6):1129-1141.
  • 3王淑云,阚君武,王鸿云,凌荣华,杨振宇,蒋永华,张忠华.基于圆弧限位的压电发电装置[J].光学精密工程,2013,21(2):342-348. 被引量:11
  • 4马华安,刘景全,唐刚,杨春生,李以贵.一种宽频的磁式压电振动能量采集器[J].传感器与微系统,2011,30(4):66-68. 被引量:18
  • 5王兆强,刘海利,徐天柱,陈加浪,黄震宇.谐振式压电叠堆的高效换能结构研究[J].振动与冲击,2011,30(12):125-128. 被引量:6
  • 6Gua L,Livermore C.Passive self-tuning energy harvester forextracting energy from rotational motion[J].Applied Physics Letters,2010,97(8):081904.1-081904.3.
  • 7Janphuang P,Isarakom D,Briand D,et al.Energyharvesting from a rotating gear using an impact typepiezoelectric MEMS scavenger[C].//16th International Solid-State Sensors,Actuators and Microsystems Conference,Beijing,IEEE,2011:735-738.
  • 8Gavallier 8,Berthelot P,Nouira H,et al.Energy harvesting using vibrating structures excited by shock[J].IEEE Ultrasonics Symposium,2005,2:943-945.
  • 9王淑云,阚君武,王鸿云,李征,赵子超,万杰,曹迪.液压流体吸振器用圆形压电发电装置的建模与性能分析[J].振动与冲击,2012,31(16):177-182. 被引量:6
  • 10Mo C,Radziemski L J, Clark W W.Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system[J].Smart Mater.Struct.,2010,19(2);1-10.

二级参考文献41

  • 1Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications [ J ]. Measurement Science and Technology,2006,17 ( 12 ) : 175 -195.
  • 2Shadrach J R. Energy scavenging for wireless sensor nodes with a focus on vibration electricity conversion [ D ] Berkeley : UC Berke- ley ,2003 : 19 -32.
  • 3Jeong S J, Kim M S, Song J S. Two-layered piezoelectric bender device for micro-power generator [ J ]. Sensors and Actuators, 2008,148 ( 1 ) : 158 -167.
  • 4Kee S M, Liang H, Yi J G, et al. Tire tread deformation sensor and energy harvester development for" smart tire" applications [ C ]/// Conference on Sensors and Smart Structures Technologies for Ci- vil,Mechanical and Aerospace Systems, San Diego, USA,2007 : 1 -12.
  • 5Erturk A, Jamil M R, Daniel J I. Piezoelectric energy harvesting from a L-shaped beam-mass structure with an application to UAVs[ J]. Journal of Intelligent Material Systems and Structures, 2009,20 (5) :529 -544.
  • 6Balachandran B, Nayfeh A. Nonlinear motions of beam-mass struc- ture [ J ]. Nonlinear Dynamics, 1990,1 ( 1 ) :39 -61.
  • 7Challa V R, Prasad M G, Shi Yong, et al. A vibration energy har- vesting device with bidirectional resonance frequency tunabili- ty [ J ]. Smart Mater Struct ,2008,17 ( 1 ) :2 -6.
  • 8Guyomar D, Sebald G, Pruvost S,et al. Energy Harvesting from Ambient Vibrations and Heat[J].Journal of Intelligent Material Systems and Structures, 2009. 20(5): p. 609-624.
  • 9Rodig T A, Schonecker G, Gerlach A. Survey on Piezoelectric Ceramics for Generator Applications [J].Journal of the American Ceramic Society, 2010. 93(4): p. 901-912.
  • 10Priya S ,Inman D J. Energy Harvesting Technologies[M] Blacksburg: Springer. 2009.

共引文献35

同被引文献19

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部