期刊文献+

基于极限学习机回归的海水Chla浓度预测方法 被引量:2

Prediction method of Chlorophyll-a concentration in seawater based on extreme learning machine regression
原文传递
导出
摘要 有效监测海水Chl a浓度状况对近海赤潮等海洋灾害的预警预报有着重要意义。运用灰色关联分析法确定预测模型的输入变量,可有效降低预测模型系统维数。采用极限学习机回归方法建立海水Chl a浓度预测模型,通过与广义回归神经网络、支持向量机回归二种模型的预测效果进行对比,表明极限学习机回归预测模型具有较好的预测精度、预测效率和泛化能力,能够实现针对研究水域环境下Chl a浓度的有效预测。 Effective monitoring the state of chlorophyll-a concentration in seawater plays an important role for the early warning of marine disasters,such as coastal red tides. Grey correlation analysis method is used to determine the input variables of the prediction model. It can effectively reduce the dimension of the model system. Extreme learning machine regression( ELMR) method was used to build the prediction model of chlorophyll-a concentration in seawater.Comparing with the generalized regression neural network and support vector machine regression model,it indicates that extreme learning machine regression has better accuracy,efficiency and generalization ability of prediction than other methods. It adapts to be used for predicting the concentration of chlorophyll-a in this researched seawater area.
作者 张颖 高倩倩
出处 《海洋环境科学》 CAS CSCD 北大核心 2015年第1期107-112,共6页 Marine Environmental Science
基金 国家自然科学基金项目(61273068) 上海市自然科学基金项目(12ZR1412600) 上海市教委科研创新项目(13YZ084)
关键词 Chla浓度 极限学习机回归 预测模型 灰色关联分析 软测量 Chlorophyll-a concentration extreme learning machine regression prediction model grey correlation analysis soft sensing
  • 相关文献

参考文献15

  • 1王千,李哲,范洁.我国近岸海洋生态环境监测研究进展[J].国土资源情报,2013(3):44-48. 被引量:10
  • 2VARDON D R,CLARK M M,LADNER D A. The potential of laser scanning cytometry for early warning of algal blooms in desalination plant feedwater [J]. Desalination,2011,277(1/2/3) :193-200.
  • 3MILLIE D F, WECKMAN G R, YOUNG W A, et al. Coastal ' Big Data' and nature-inspired computation: Prediction potentials, uncer- tainties, and knowledge derivation of neural networks for an algal metric [ J ]. Estuarine,Coastal and Shelf Science,2013,125:57457.
  • 4ZENG W, SONG Q, LIU H, et al. Research on ANN-based Pre- warning Water Bloom Model of LiuHai Lake in Beijing [ J]. Pro- cedia Environmental Sciences ,2010,2:625-635.
  • 5GARCIA P J,SANCHEZ F, COS F J, et al. Study of cyanotoxins presence from experimental cyanobacteria concentrations using a new data mining methodology based on multivariate adaptive re- gression splines in Trasona reservoir ( Northern Spain) [ J]. Jour- nal of Hazardous Materials ,2011,195:414-421.
  • 6LEE J H W, HUANG Y, DICKMAN M, et al. Neural network modelling of coastal algal blooms [ J . Ecological Modelling, 2003,159 ( 2/3 ) : 179 -201.
  • 7CHEN Q, MYNETI" A E. Modelling algal blooms in the Dutch coastal waters by integrated numerical and fuzzy cellular automata approaches [ J ]. Ecological Modelling, 2006,199 ( 1 ) : 73-81.
  • 8崔东文.极限学习机在湖库总磷、总氮浓度预测中的应用[J].水资源保护,2013,29(2):61-66. 被引量:12
  • 9OLATUNJI S O, SELAMAT A, ABDULRAHEEM A. A hybrid model through the fusion of type-2 fuzzy loglc systems and ex- treme learning machines for modelling permeability prediction [ J ]. Information Fusion,2014,16:29-45.
  • 10BUENO A,GARCIA P J,SANCHO J L. Neural architecture de- sign based on extreme learning machine [ J]. Neural Networks, 2013,48 : 19-24.

二级参考文献37

共引文献20

同被引文献21

引证文献2

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部