期刊文献+

基于混合核函数SVM的蛋白质相互作用预测方法 被引量:3

Protein-protein interaction prediction method based on SVM with hybrid kernel function
原文传递
导出
摘要 针对蛋白质相互作用的预测问题,提出一种以余弦核和线性差值累加核为基核的对偶混合核函数SVM的蛋白质相互作用预测方法.该方法充分考虑了蛋白质的结构域特征,同时根据蛋白质相互作用数据应具有顺序无关的特点,将"对偶"思想引入SVM核函数中.对两个真实的蛋白质相互作用数据集Yeast PPI和Human PPI的测试结果表明,提出的方法与其它方法相比能够有效地提高蛋白质相互作用预测的准确率. This paper puts forward a kind of SVM based on the pairwise hybrid kernel function of cosine kernel and linear differential accumulate kernel for protein -protein interaction prediction problem. This method considers the feature of protein domains fully. At the same time, according to the data of the protein - protein interaction should be have a feature of sequence - independent , so the idea of the "pairwise" take into the SVM kernel function. Testing on two real data of Yeast PPI and Human PPI , and the resuhs show that the new method in this paper can improve the accuracy of predicting protein -protein interaction effectively compared with other methods.
作者 蔡丹莉 郭红
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期834-840,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省科技重点基金资助项目(2011Y0040)
关键词 蛋白质相互作用 结构域 混合核函数 protein - protein interaction SVM domain hybrid kernel function
  • 相关文献

参考文献13

  • 1Sun J,Xu J,Liu Z,et al.Refined phylogenetic profiles method for predicting protein-protein interactions[J].Bioinformatics,2005,21(16):3409-3415.
  • 2倪青山,王正志,王广云,强波.基于局部支持向量机的蛋白质相互作用的预测方法[J].生物医学工程研究,2008,27(2):69-73. 被引量:4
  • 3Sato T,Yamanishi Y,Horimoto K.Prediction of protein-protein interactions from phylogenetic trees using partial correlation coefficient[J].Genome Imformatics,2003,14:496-497.
  • 4Bakar S A,Taheri J,Zomaya A Y.FIS-PNN:A hybrid computational method for protein-protein interaction prediction[C]//9th IEEE/ACS International Conference on Computer Systems and Applications.[s.l.]:IEEE Press,2011:196-203.
  • 5Urquiza J M,Rojas I,Pomares H,et al.Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection[J].Neurocomputing,2011,74(16):2 683-2 690.
  • 6Yu J T,Guo M Z,Chris J,et al.Simple sequence-based kernels do not predict protein-protein interactions[J].Bioinformatics,2010.26(20):2 610-2 614.
  • 7Martin S,Rose D,Faulon J L,et al.Predicting protein-protein interactions using signature products[J].Bioinformatics,2005,21(2):218-226.
  • 8Cortes C,Vapnik V.Support vector network[J].Machine Learning,1995,20 (3):273-297.
  • 9Chatterjee P,Basu S,Kundu M,et al.PPI_SVM:Prediction of protein-protein interactions using machine learning,domain-domain affinities and frequency tables[J].Cellular & Molecular Biology Letters,2011,16 (2):264-278.
  • 10Yu C Y,Chou L C,Chang D T H,et al.Predicting protein-protein interactions in unbalanced data using the primary structure of proteins[J].BMC Bioinformatics,2010,11:167.

二级参考文献10

  • 1[1]Mrowka R,Patzak A,Herzel H.Is there a bias in proteome research[J].Genome Res 2001,11(12):1971-1973.
  • 2[2]Enright AJ,Iliopoulos I,Kyrpides NC,et al.Protein interaction maps for complete genomes based on gene fusion events[J].Nature,1999,402(6757):86-90.
  • 3[3]Goh CS,Cohen FE.Co-evolutionary analysis reveals insights into protein-protein interactions[J].J Mol Biol,2002,324(1):177-192.
  • 4[4]Sato T,Yamanishi Y,Kanehisa M,et al.The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships[J].Bioinformatics,2005,21(17):3482-3489.
  • 5[5]Craig RA,Liao L.Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices[J].BMC Bioinformatics,2007,8(1):6.
  • 6[6]Martin S,Roe D,Faulon JL.Predicting protein-protein interactions using signature products[J].Bioinformatics,2005,21(2):218-226.
  • 7[7]Nanni L.Fusion of classifiers for predicting Protein-Protein interactions[J].Neurocomputing,2005,68:289-296.
  • 8[8]Nanni L.Hyperplanes for predicting Protein-Protein interactions[J].Neurocomputing,2005,69:257-263.
  • 9[9]Nanni L,Lumini A.An ensemble of K-local hyperplanes for predicting protein-protein interactions[J].Bioinformatics,2006,22(10):1207-1210.
  • 10[10]Joachims T.Learning to classify text using support vector machines-methods,theory,and algorithms[D].Ithaca:Cornell University,2002.

共引文献3

同被引文献6

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部