期刊文献+

基于改进MLE-NR方法的杂波Weibull分布模型参数估计

Parameter estimation for clutter Weibull-distributed model based on improved MLE-NR method
下载PDF
导出
摘要 为了解决传统最大似然-牛顿拉夫森(MLE-NR)方法需要谨慎地选择初始值保证迭代过程收敛的问题,该文提出了一种针对杂波韦布尔(Weibull)分布模型的参数估计方法。首先计算迭代点处的海森(Hessian)矩阵,然后根据海森矩阵的值,不断调整迭代过程中的发散点或错误的初始迭代点,使发散的迭代过程重新收敛,从而正确地估计模型参数。针对长度为256、512、1 024、2 048、4 096的随机样本数据,分别进行了N=500的蒙特卡洛(Monte-Carlo)仿真,仿真结果证明了该文方法的收敛性。蒙特卡洛仿真结果和基于实测样本的处理结果说明了该文方法的有效性和鲁棒性。 To solve the problem of the traditional maximum likelihood estimation-Newton Raphson ( MLE-NR ) method that the initial value must be selected carefully to ensure the convergence of iteration,an improved MLE-NR method for parameter estimation of clutter Weibull-distributed model is presented here. The Hessian matrix of the iteration point is calculated, the divergent points in iteration process and wrong initial iteration points are adjusted to a convergence region according to the determinant value of the Hessian matrix,so that the divergent iteration is convergent again and the model parameter can be estimated correctly. Monte-Carlo simulations are proceeded with N=500 and the lengths of the random sample data are 256,512,1 024,2 048,4 096 respectively. The results show that the improved MLE-NR method is convergent for sample data with different length. The Monte-Carlo simulation and processing results based on measured data demonstrate the effectiveness and robustness of this method.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第6期720-725,共6页 Journal of Nanjing University of Science and Technology
关键词 最大似然-牛顿拉夫森方法 韦布尔分布模型 参数估计 初始值 海森矩阵 蒙特卡洛仿真 maximum likelihood estimation-Newton Raphson method Weibull-distributed model parameter estimation initial value Hessian matrix Monte-Carlo simulation
  • 相关文献

参考文献13

  • 1Shnidman D A. Radar detection in clutter [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41 (3) : 1056-1067.
  • 2Shnidman D A. Generalized radar clutter model [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1999,35 (3) :857-865.
  • 3Kaio N, Osaki S. Comparisons of point estimation methods in the 2-parameter Weibull distribution [ J ]. IEEE Transactions on Reliability, 1980, R-29( 1 ) :21.
  • 4Cran G W. Moment estimators for the 3-parameter Weibull distribution [ J ]. IEEE Transactions on Reliability, 1988,37 (4) :360-363.
  • 5Tuzuner A, Yu Zuwei. A theoretical analysis on parameter estimation for the Weibull wind speed distribution [ A ]. 2008 IEEE Power and Energy Society General Meeting-conversion and Delivery of Electrical Energy in the 21 st Century [ C ]. Pittsburgh, PA, USA : IEEE ,2008 : 1-6.
  • 6Cohen A C. Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples [ J ]. Technometrics, 1965,7 (4) : 579 -588.
  • 7Steven M K. Fundamentals of statistical signal processing: Estimation theory [ M ]. New Jersey, USA: Prentice Hall PTR, 1993.
  • 8Aldrich J R A. Fisher and the making of maximum likelihood 1912 - 1922 [ J ]. Statistical Science, 1997,12 (3) :162-176.
  • 9Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate [ A ]. IEEE International Conference of Acoustic, Speech and Signal Processing (ICASSP'86) [ C ]. Tokyo, Japan IEEE, 1986 : 1409-1412.
  • 10胥嘉佳,刘渝,邓振淼.LFM信号参数估计的牛顿迭代方法初始值研究[J].电子学报,2009,37(3):598-602. 被引量:12

二级参考文献31

  • 1刘贵喜,凌文杰.LFMCW雷达密集运动目标检测[J].红外与毫米波学报,2005,24(1):76-80. 被引量:11
  • 2邓振淼,刘渝,王志忠.正弦波频率估计的修正Rife算法[J].数据采集与处理,2006,21(4):473-477. 被引量:92
  • 3邓振淼,刘渝.正弦波频率估计的牛顿迭代方法初始值研究[J].电子学报,2007,35(1):104-107. 被引量:56
  • 4周良臣,杨建宇,唐斌.一种高效的LFM信号参数估计方法及性能分析[J].电子学报,2007,35(6):1128-1133. 被引量:12
  • 5蔡大用 白峰杉.高等数值分析[M].北京:清华大学出版社,2000..
  • 6Barbarossa. Detection and imaging of moving objects with synthetic aperture radar, part Ⅱ: Joint time-frequency analysis by Wigner-ViUe dislribution [ J]. IEE Proc Pt F, 1992, 139 ( 1 ) : 89 - 97.
  • 7Xia Xianggen. Discrete chirp-fourier transform and its application to chirp rate estimation[ J]. IEEE Trans on Signal Processing,2000,48(11) :3122 - 3133.
  • 8Luis B Almeida. The fractional fourier transform and time-frequency representations [ J ]. IEEE Trans on Signal Processing, 1994,42(11) :3084 - 3091.
  • 9S Peleg, B Porat. Linear FM signal parameter estimation form discrete-time observations[ J]. IEEE. Trans on Aerospace and Electronic Systems, 1991,27(7) :607 - 615.
  • 10T J Abatzoglou. Fast maximum likelihood joint estimation of frequency and frequency rate [ J ]. IEEE Trans on Aerospace and Electronic Systems, 1986,11 (4) :708 - 715.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部