期刊文献+

不确定性多维传感器数据的有效存储与查询方法

Efficient storage and query method for multidimensional uncertain sensor data
下载PDF
导出
摘要 为解决传统数据库管理技术无法有效管理不确定性数据的问题,该文设计了一种多维数组树(MB树)。MB树是一种基于贝叶斯网络的图数据结构,以贝叶斯网络作为概率图模型解决存储和查询问题。对海量数据建模并响应查询。证明了可预测性和结构关联性。利用真实数据集和合成数据集对MB树的性能进行了测试。验证了具有潜在联合分布的MB树的编码准确度。与相似的图模型比较,采用MB树的查询处理效率平均可提升约3倍。 To solve the problem that traditional database management technology can’ t manage uncertain data efficiently,a multidimensional array B-tree( MB-tree) is designed here. The MB-tree is a graph data structure based on Bayesian network. Bayesian network is used as a probabilistic graphical model to solve the storage and query problem of uncertain data. Mass multidimensional sensor data is modeled and responds to query. The predictability and relevance of multidimensional data structure are proved. The performance of the MB-tree is tested using real data sets and synthetic data sets. The coding accuracy of the MB-tree with potential co-distribution is verified. The query efficiency of the MB-tree is about 4 times as fast as those of alike graphical models.
作者 张军 王永利
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第6期750-756,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61170035) 中国博士后科学基金特别资助项目(200902517) 中央高校基本科研业务费专项资金(30920130112006) 江苏省自然科学基金重大专项(BK2011022) 江苏省自然科学基金(BK2011702) 江苏省重点学科建设专项经费(公安技术)
关键词 多维传感器 数据 存储 查询 多维数组树 贝叶斯网络 图数据结构 概率图模型 真实数据集 合成数据集 multidimensional sensors data storage query multidimensional array-tree Bayesian network graph data structure probabilistic graphical model real data sets synthetic data sets
  • 相关文献

参考文献14

  • 1Chang C, Acharya A, Sussman A, et al. T2: A customizable parallel database for multi-dimensional data[ A ]. SIGMOD [ C ]. [ s. l. ], USA: ACM Press, 1998:221-232.
  • 2Marathe A P, Salem K. Query processing techniques for arrays[J]. The VLDB Journal,2002,11 ( 1 ) :68-91.
  • 3SciDB Community Forum. SciDB: The computational DBMS for data-obsessed organizations; programmable from R & Python[ EB/OL]. http ://scidb. org/,2014- 11-01.
  • 4Antova L, Jansen T, Koch C, et al. Fast and simple relational processing of uncertain data[ A]. 2008 IEEE 24th International Conference on Data Engineering (ICDE'08) [ C ]. Cancun, Mexico : ICDE ,2008.
  • 5Benjelloun O, Das Sarma A, I-Ialevy A, et al. ULDBs: Databases with uncertainty and lineage [ A ]. VLDB'06 Proceedings of the 32nd International Conference on Very large Data Bases[ C ]. Seoul, Korea:2006 VLDB Endowment, 2006 : 953 -964.
  • 6Sen P, Deshpande A. Representing and querying correlated tuples in probabilistic databases [ A ]. 2007 IEEE 23rd International Conference on Data Engineering ( ICDE, 2007 ) [ C ]. Istanbul, Turkey: IEEE, 2007 : 596-605.
  • 7蒋涛,高云君,张彬,周傲英,乐光学.不确定数据查询处理[J].电子学报,2013,41(5):966-976. 被引量:21
  • 8张慧,郑吉平,韩秋廷.BTreeU-Topk:基于二叉树的不确定数据上的Top-k查询算法[J].计算机研究与发展,2012,49(10):2095-2105. 被引量:2
  • 9周逊,李建中,石胜飞.不确定数据上两种查询的分布式聚集算法[J].计算机研究与发展,2010,47(5):762-771. 被引量:11
  • 10Jordan M. Learning in graphical models [ M ]. Cambridge, MA, USA : MIT Press, 1998.

二级参考文献105

  • 1李建中 于戈 周傲英.不确定性数据管理的要求与挑战[J].中国计算机学会通讯,2009,5(4):6-14.
  • 2Singh S,Mayfield C,Shah R,et al.Query selectivity estimation for uncertain data[C] //Proc of the 20th Int Conf on Scientific and Statistical Database Management (SSDBM'08).New York:Springer,2008:61-78.
  • 3Abiteboul S,Kanellakis P,Grahne G.On the representation and querying of set of possible worlds[J].ACM SIGMOD Record,1987,16(3):34-48.
  • 4Cheng R,Kalashnikov D V,Prabhakar S.Evaluating probabilistic queries over imprecise data[C] //Proc of the 2003 ACM SIGMOD Int Conf on Management of Data (SIGMOD'03).New York:ACM,2003:551-562.
  • 5Soliman M A,Ilyas I F,Chang K C -C.Top-k query processing in uncertain databases[C] //Proc of the 23rd Int Conf on Data Engineering (ICDE'07).Piscataway,NJ:IEEE,2007:896-905.
  • 6Hua M,Pei J,Zhang W,et al.Ranking queries on uncertain data:A probabilistic threshold approach[C] //Proc ACM Int Conf on Management of Data (SIGMOD'08).New York:ACM,2008:673-686.
  • 7Jin Che-Qing,Yi Ke,Chen Lei,et al.Sliding-window top-k queries on uncertain streams[J].Proc of VLDB Endowment,2008,1(1):301-312.
  • 8Cheng R,Chen J,Mokbel M,et al.Probabilistic Verifiers:Evaluating constrained nearest-neighbor queries over uncertain data[C] //Proc of Int Conf on Data Engineering (ICDE 2008).Piscataway,NJ:IEEE,2008:973-982.
  • 9Qi Y,Singh S,Shah R,et al.Indexing probabilistic nearest-neighbor threshold queries[C] //Proc of the 1st Workshop on Management of Uncertain Data (MUD'08).Enschede,Netherlands:Centre for Telematics and Information Technology,2008:87-102.
  • 10George Beskales,Mohamed A.Soliman,Ihab F.Ilyas.Efficient search for the top-k probable nearest neighbors in uncertain databases[J].Proc of VLDB Endowment,2008,1(1):326-339.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部