期刊文献+

水面拖曳系统龙须缆静态构型算法

Steady State Solution of Towed Surface System with Bridle Configuration
下载PDF
导出
摘要 为快速确定水面拖曳系统龙须缆的稳态运动参数,建立拖缆三维稳态平衡微分方程。根据拖缆两端的边界条件,利用二分法和龙哥库塔方法,对拖缆微分方程进行积分求解,确定水面拖曳系统中龙须缆的构型及稳态运动参数。以具体的拖曳实例为例进行数值仿真计算,分析龙须缆物理参数变化对系统稳态运动的影响。结果表明,运用这种算法,可以在拖曳系统初步设计阶段快速确定系统索具的参数,并能满足系统设计要求。 In order to quickly determine the steady state motion parameters of the surface towed system with bridle configuration, the towing steady-state equilibrium differential equation is established. The differential equations are solved under the boundary conditions at the ends of the towing lines by both bisection method and 4th order Rnnge-Kutta method, to determine the towing bridle configuration and the steady state motion parameters. The numerical simulation was carried out and the effect of physical parameters of the towing bridle on the steady state motion of the system is analyzed. The simulation results prove that this algorithm can be used to determine the parameters of the systems quickly for preliminary design.
出处 《中国航海》 CSCD 北大核心 2014年第4期59-63,共5页 Navigation of China
基金 国家自然科学基金(51109090) 李尚大基金资助项目(ZC2010011)
关键词 水路运输 水面拖曳 龙须缆 静态构型 二分法 waterway transportation surface towing towing bridle static configuration bisection method
  • 相关文献

参考文献7

  • 1JT/T214—1995海上拖航技术要求[S].
  • 2WALTON T S,POLACHECH H.Calculation of Transient Motion of Submerged Cables[J].Mathematics of Computation,1960,14:27-46.
  • 3中嶋俊夫,元良誠三,藤野正隆.質点系モデルによる係留ライ ンの3次元動的解析法[C].东京:日本造船学会論文集,1983.
  • 4ABLOW C M,SCHECHTER S.Numerical Simulation of Undersea Cable Dynamics[J].Ocean Engineering,1983,10(6):443-457.
  • 5VANDANA R K.Finite Element Analysis of Under Water Towed Cables[C].Proceedings of International Conference on Energy and Environment,2013.
  • 6王飞,黄国樑,邓德衡.水下拖曳系统的稳态运动分析与设计[J].上海交通大学学报,2008,42(4):679-684. 被引量:21
  • 7朱军,熊鹰,王志国.拖缆系统直线定常运动仿真计算[J].海军工程大学学报,2001,13(2):17-20. 被引量:14

二级参考文献10

  • 1C M Ablow and S Schechter. Numerical simulation of undersea cable dynamics[J]. Ocean Engng 1983.10(6): 443-457.
  • 2M P Paidoussis. Dynamics of flexible slender cylinders in axial flow[J]. Theory. J. Fluid Mech, 1966,26(4). 717-736.
  • 3Yang Sun and John W Lenard. Dynamics of ocean cables with local lowtension regions[J]. Ocean Engng, 1998.25(6): 443-463.
  • 4Huang S. Dynamic analysis of three-dimensional marine cables[J]. Ocean Engineering, 1994,21 ( 6 ) : 587 - 605.
  • 5Ablow C M, Schechter S. Numerical simulation of undersea cable dynamies[J]. Ocean Engineering, 1983, 10 (6):443-457.
  • 6Sun Y, Leonard J W, Chiou R B. Simulation of unsteady oceanic cable deployment by direct integration with suppression [J]. Ocean Engineering, 1994, 21 (3) :243-256.
  • 7De Zoysa A P K. Steady-state analysis of undersea cables [J]. Ocean Engineering, 1978 (5) : 209-223.
  • 8Friswell M I. Steady-state analysis of underwater cables [J]. Journal of Waterway Port Coastal and Ocean Engineering, 1995, 121 (2):98-104.
  • 9Milinazzo F, Wilkie M, I.atchman S A. An efficient algorithm for simulating the dynamics of towed cable systems [J]. Ocean Engineering, 1987, 14 (6): 513-526.
  • 10WANG Fei, HUANG Guo-liang, DENG De-heng. Steady state analysis of towed marine cable [J]. Journal of Shanghai Jiaotong University (Science Edition), 2008,13(2) :245-251.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部