期刊文献+

基于人工神经网络的微博投诉句识别 被引量:1

Identification of Micro-blog Complaint Sentences through ANN
下载PDF
导出
摘要 近年来,微博投诉成为用户维权的新途径。面对海量微博投诉,企业如何在有限资源下实现微博投诉自动诊断和处理,引发了学术和业界的高度关注。微博投诉句识别是微博投诉自动化处理的前提。本文针对微博投诉句识别问题,设计了微博投诉句识别框架,提出了投诉句识别的MCSI模型;应用人工神经网络方法,基于投诉信息特征、语句位置、句式、句长、词频5个属性,识别语句是否为投诉句。与多种基线模型相比,本文提出的模型可以提高投诉句识别性能。 Nowadays, microblogging complaints have become a new way for users to express their rights and dissatisfactions. How to achieve automatic diagnosis and treatment of mieroblogging complaints with limited resource is causing great concern in the academic and practice. Recognition of complaint sentences from microblogging complaint is a prerequisite for automated processing of microblogging complaints and this work designs a Microblogging Complaint Sentence Recognition (MCSR) model for the task. The model uses artificial neural network method, based on 5 features including the complaint information feature, sentence position, syntactical structure, sentence length, and word frequency to identify whether the sentence is a complaint sentence. In comparison with a variety of baseline models, the proposed model can improve the performance of microblogging complaint sentence recognition.
出处 《情报学报》 CSSCI 北大核心 2014年第11期1215-1221,共7页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金项目“移动社会化媒体中基于价值共创的企业负面口碑处理资源的管理方法及系统研究”(71371081) 教育部博士点(博导类)基金资助项目“基于价值共创的在线负面口碑处理知识推荐的研究”(20130142110044) 华中科技大学创新研究院技术创新基金资助项目“微博平台在线负面口碑处理的知识推荐研究”(CXY13Q033).
关键词 微博投诉 投诉句识别 人工神经网络 microblogging complaint, complaint sentence recognition, ANN
  • 相关文献

参考文献18

  • 1Jansen B J, Zhang M,Sobel K, et al. Micro-blogging as online word of mouth branding [ C ]//CHI 09 Extended Abstracts on Human Factors in Computing Systems. Boston, MA, USA, 2009: 3859-3864.
  • 2Halstead D, Morash E A,Ozment J. Comparing objective service failures and subjective complaints:An investigation of domino and halo effects [ J ]. Journal of Business Research, 1996, 36 ( 2 ) : 107-115.
  • 3Chen K C. Text mining e-complaints data from e-auction store with implications for internet marketing research [ J]. Journal of Business and Economics Research,2011 , 7(5) : 15-24.
  • 4Hogenboom A, Hogenboom F, Frasincar F, et al. Semantics- based information extraction for detecting economic events [ J ]. Multimedia Tools and Applications,2013, 64 ( 1 ) : 27 -52.
  • 5Benson E, Haghighi A, Barzilay R. Event discovery in social media feeds [ C ]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA, 2011 : 389-398.
  • 6Jacoby J,Jaccard J J. The sources, meaning, and validity of consumer complaint behavior: A psychological analysis [J]. Journal of Retailing,1981, 57(3) : 4-24.
  • 7Liu B, Hu M,Cheng J. Opinion Observer: Analyzing and Comparing Opinions on the Web[ C]//Proceedings of the 14th International Conference on World Wide Web. Chiba, Japan, 2005: 342-351.
  • 8Ding X,Liu B,Yu P S. A holistic lexicon-based approach to opinion mining [ C ]//Proceedings of the 2008 International Conference on Web Search and Data Mining. Palo Alto, California, USA, 2008 : 231-240.
  • 9Pang B, Lee L. Opinion mining and sentiment analysis [J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2) : 1-135.
  • 10Coussement K, Van den Poel D. Improving customer complaint management by automatic email classification using linguistic style features as predictors [ J ]. Decision Support Systems,2008, 44 (4) : 870-882.

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部