期刊文献+

基于减法聚类和K均值聚类的彩色图像分割算法

Region-Based Image Segmentation with Improved Subtractive Clustering and K-means Clustering
下载PDF
导出
摘要 传统图像分割方法大都存在分割速度低下、过度分割等缺点.针对上述问题,提出一种新的彩色图像区域分割算法.这种方法首先将图像转化至L*a*b*空间,并划分为子块,抽取图像子块的颜色、纹理和位置特征组成子块的特征向量,然后运用减法聚类,获得聚类簇数和初始蔟中心,最后利用改进的K均值算法在像素点特征空间进行聚类,进而分割图像成区域.实验结果表明这种新方法具有分割效率高、分割效果理想等优点. The traditional image segmentation methods are often of some disadvantages, such as the lower segmentation speed, the over segmentation etc. To resolve these problems, a new region-based color image segmentation algorithm is introduced in the paper, which transforms an image to L*a*b* space, and it divides the image into sub-blocks, and it extracts color, texture and position features for every sub-block firstly. Then, the number of cluster and the initial cluster center are obtained by using subtractive clustering algorithm. Finally, the cluster program is completed by the application of a modified K-mean algorithm in the feature space of pixel. The experimental results show that this new method has the advantages of high speed of image segmentation, good segmentation effect etc.
作者 汪彦 何建新
出处 《湖南城市学院学报(自然科学版)》 CAS 2014年第4期68-71,共4页 Journal of Hunan City University:Natural Science
基金 湖南省教育厅科研项目(12C0572) 湖南省科技厅科研项目(2012SK3115)
关键词 特征向量 图像区域分割 减法聚类 K均值算法 feature vector region-based image segmentation subtractive clustering K-mean algorithm
  • 相关文献

参考文献11

二级参考文献100

共引文献570

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部