R^N中—(p,q)-Laplacian拟线性椭圆方程组正解的存在性和多重性
Existence and Multiplicity of Positive Solutions for a(p,q)-Laplacian Quasilinear Elliptic System in R^N
摘要
研究了—(p,g)-Laplacian拟线性椭圆方程组.当连续函数V和W在两种情形下利用Moser迭代技巧和Ljusternik-Schnirelmann畴数理论,建立了方程组正解的存在性和多重性结果.
A class of (p, q)-Laplacian quasilinear elliptic system is studied. When the continuous function V and W satisfy both cases, existence and multiplicity of positive solutions is obtained by using Moser iteration and Ljusternik-Schnirelmann category theory.
出处
《应用泛函分析学报》
CSCD
2014年第4期346-350,共5页
Acta Analysis Functionalis Applicata
基金
山西省高校科技研究开发项目(20111129)
参考文献19
-
1Astrita G,Marrucci G.Principles of non-Newtonian fluid mechanics[M].New York:McGraw-Hill,1974.
-
2Martinson L K,Pavlov K B.Unsteady shear flows of a conducting fluid with a rheological power law[J].Magnitnaya Gidrodinamika,1971,2:50-58.
-
3Kalashnikov A S.On a nonlinear equation appearing in the theory of non-stationary filtration[M].Trud Sem I G Petrovski,1978.
-
4Esteban J R,Vazquez J L.On the equation of turbulent filteration in one-dimensional porous media[J].Nonlinear Anal,1982,10:1303-1325.
-
5Furtado M F,da Silva J P P.Multiplicity of solutions for homogeneous elliptic systems with critical growth[J].J Math Anal Appl,2012,385(2):770-785.
-
6Ikoma N,Tanaka K.A local mountain pass type result for a system of nonlinear Schr dinger equations[J].Calc Var,2011,40(3-4):449-480.
-
7Fang Y Q,Zhang J H.Multiplicity of solutions for elliptic system involving supercritical sobolev exponent[J].Acta Appl Math,2011,115(3):255-264.
-
8Alves C O.Multiplicity of positive solutions for a mixed boundary elliptic system[J].Rocky Mountain J Math,2008,38(1):19-39.
-
9Tang Zhongwei.Spike-layer solutions to singularly perturbed semilinear systems of coupled Schr dinger equations[J].J Math Anal Appl,2011,377(1):336-352.
-
10Lin Hueili.Multiple positive solutions for semilinear elliptic systems involving subcritical nonlinearities in RN[J].Boundary Value Problems,2012,118.
二级参考文献18
-
1Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics. New York: McGraw-Hill, 1974.
-
2Martinson L K, Pavlov K B. Unsteady shear flows of a conducting fluid with a rheological power law Magnitnaya Gidrodinamika, 1971, 2:50- 58.
-
3Kalashnikov A S. On a Nonlinear Equation Appearing in the Theory of Non-stationary Filtration. Russian Trud Sere I G Petrovski. 1978.
-
4Esteban J R, Vazquez J L. On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal 1986, 10(11): 1303-1325.
-
5Fang Y Q, Zhang J H. Multiplicity of solutions for elliptic system involving supercritical Sobolev exponent. Acta Appl Math, 2011, 115(3): 255-264.
-
6Han P. Multiple positive solutions of nonhomogeneous elliptic systems involving critical Sobolev exponents. Nonlinear Anal, 2006, 64(4): 869 -886.
-
7Ishiwata M. Multiple solutions for semilinear elliptic systems involving critical Sobolev exponent. Differ- ential Integral Equations, 2007, 20(11): 1237-1252.
-
8Hsu T S. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlin- earities. Nonlinear Anal, 2009, 71(7/8): 2688-2698.
-
9Willem M. Minmax Theorems. Boston: Birkhauser, 1996.
-
10Alves C O, Soares S H M. Existence and concentration of positive solutions for a class of gradient systems Nodea Nonlinear Differential Equations and Appl, 2005, 12(4): 437- 457.
-
1王术.带有非线性边界条件的抛物型方程的整体解存在性[J].河南大学学报(自然科学版),1994,24(4):19-24.
-
2李胜宏.散度型拟线性弱椭圆方程组α_S—弱解的最大模估计[J].长沙水电师院自然科学学报,1989,4(6):1-9.
-
3赵亮,张宁.一类向量值函数的Adams不等式[J].南昌航空大学学报(自然科学版),2015,29(3):45-48.
-
4许绍元.一类非线性方程的解的存在性及其应用[J].应用数学,2000,13(1):23-26. 被引量:12
-
5LI Xiaomeng.Extremal Functions for Trudinger-Moser Type Inequalities in RN[J].Journal of Partial Differential Equations,2017,30(1):64-75.
-
6谢君辉,雷森文.一类带扩散的捕食者-食饵模型解的性态研究[J].湖北民族学院学报(自然科学版),2014,32(4):398-401. 被引量:2
-
7张庆政.一类非紧算子正不动点的存在唯一性[J].Journal of Mathematical Research and Exposition,1999,19(3):617-620. 被引量:9
-
8YANG Yunyan ZHU Xiaobao.A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space[J].Journal of Partial Differential Equations,2013,26(4):300-304. 被引量:1
-
9胡满峰,曹俊峰,张景祥.混合单调算子方程组解的Mann迭代序列的收敛性[J].江南大学学报(自然科学版),2003,2(4):427-429.
-
10张春花,徐星.混合单调算子的不动点定理及应用[J].徐州师范大学学报(自然科学版),2011,29(4):33-37.