期刊文献+

R^N中—(p,q)-Laplacian拟线性椭圆方程组正解的存在性和多重性

Existence and Multiplicity of Positive Solutions for a(p,q)-Laplacian Quasilinear Elliptic System in R^N
下载PDF
导出
摘要 研究了—(p,g)-Laplacian拟线性椭圆方程组.当连续函数V和W在两种情形下利用Moser迭代技巧和Ljusternik-Schnirelmann畴数理论,建立了方程组正解的存在性和多重性结果. A class of (p, q)-Laplacian quasilinear elliptic system is studied. When the continuous function V and W satisfy both cases, existence and multiplicity of positive solutions is obtained by using Moser iteration and Ljusternik-Schnirelmann category theory.
作者 张文丽
机构地区 长治学院数学系
出处 《应用泛函分析学报》 CSCD 2014年第4期346-350,共5页 Acta Analysis Functionalis Applicata
基金 山西省高校科技研究开发项目(20111129)
关键词 正解 拟线性椭圆方程组 Moser迭代技巧 Ljusternik-Schnirelmann畴数理论 positive solution quasilinear elliptic system Moser iteration Ljusternik-Schnirelmanncategory theory
  • 相关文献

参考文献19

  • 1Astrita G,Marrucci G.Principles of non-Newtonian fluid mechanics[M].New York:McGraw-Hill,1974.
  • 2Martinson L K,Pavlov K B.Unsteady shear flows of a conducting fluid with a rheological power law[J].Magnitnaya Gidrodinamika,1971,2:50-58.
  • 3Kalashnikov A S.On a nonlinear equation appearing in the theory of non-stationary filtration[M].Trud Sem I G Petrovski,1978.
  • 4Esteban J R,Vazquez J L.On the equation of turbulent filteration in one-dimensional porous media[J].Nonlinear Anal,1982,10:1303-1325.
  • 5Furtado M F,da Silva J P P.Multiplicity of solutions for homogeneous elliptic systems with critical growth[J].J Math Anal Appl,2012,385(2):770-785.
  • 6Ikoma N,Tanaka K.A local mountain pass type result for a system of nonlinear Schr dinger equations[J].Calc Var,2011,40(3-4):449-480.
  • 7Fang Y Q,Zhang J H.Multiplicity of solutions for elliptic system involving supercritical sobolev exponent[J].Acta Appl Math,2011,115(3):255-264.
  • 8Alves C O.Multiplicity of positive solutions for a mixed boundary elliptic system[J].Rocky Mountain J Math,2008,38(1):19-39.
  • 9Tang Zhongwei.Spike-layer solutions to singularly perturbed semilinear systems of coupled Schr dinger equations[J].J Math Anal Appl,2011,377(1):336-352.
  • 10Lin Hueili.Multiple positive solutions for semilinear elliptic systems involving subcritical nonlinearities in RN[J].Boundary Value Problems,2012,118.

二级参考文献18

  • 1Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics. New York: McGraw-Hill, 1974.
  • 2Martinson L K, Pavlov K B. Unsteady shear flows of a conducting fluid with a rheological power law Magnitnaya Gidrodinamika, 1971, 2:50- 58.
  • 3Kalashnikov A S. On a Nonlinear Equation Appearing in the Theory of Non-stationary Filtration. Russian Trud Sere I G Petrovski. 1978.
  • 4Esteban J R, Vazquez J L. On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal 1986, 10(11): 1303-1325.
  • 5Fang Y Q, Zhang J H. Multiplicity of solutions for elliptic system involving supercritical Sobolev exponent. Acta Appl Math, 2011, 115(3): 255-264.
  • 6Han P. Multiple positive solutions of nonhomogeneous elliptic systems involving critical Sobolev exponents. Nonlinear Anal, 2006, 64(4): 869 -886.
  • 7Ishiwata M. Multiple solutions for semilinear elliptic systems involving critical Sobolev exponent. Differ- ential Integral Equations, 2007, 20(11): 1237-1252.
  • 8Hsu T S. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlin- earities. Nonlinear Anal, 2009, 71(7/8): 2688-2698.
  • 9Willem M. Minmax Theorems. Boston: Birkhauser, 1996.
  • 10Alves C O, Soares S H M. Existence and concentration of positive solutions for a class of gradient systems Nodea Nonlinear Differential Equations and Appl, 2005, 12(4): 437- 457.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部