期刊文献+

Qnil-对称环及其相关性质研究

Study on Qnil-symmetric Rings and Their Related Properties
下载PDF
导出
摘要 本文引进了qnil-对称环的概念,它是对称环的真推广.证明了:二级三角矩阵环(S M0 T)是qnil-对称环当且仅当环S,T都是qnil-对称环;环R上的幂级数环R[[x]]是qnil-对称环当且仅当R是qnil-对称环. In this paper, we extend symmetric rings and define a new one called qnil-symmetric ring. It is proved that the triangular matrix ring of order two (O^S T^M)is qnil-symmetric if and only if S and T are qnil- symmetric ; the power series ring of R is qnil-symmetric if and only if so is R.
作者 郭世乐
出处 《中央民族大学学报(自然科学版)》 2014年第4期24-29,共6页 Journal of Minzu University of China(Natural Sciences Edition)
基金 国家自然科学基金(No.11101084)
关键词 对称环 qnil-对称环 二级三角矩阵环 幂级数环 symmetric rings qnil-symmetric rings triangular matrix rings of order two power series rings
  • 相关文献

参考文献11

  • 1HARTE R E.On quasinilpotents in rings[J].Panamer Math J,1991,(1):10-16.
  • 2KOLIHA J J,PATRICIO P.Elements of rings with equal spectral idempotents[J].J Austral Math Soc,2002,72 (1):137-152.
  • 3KOLIHA J J.A generalized Drazin inverse[J].Glasgow Math J,1996,(38):367-381.
  • 4KRYLOV P A,TUGANBAEV A A.Modules over formal matrix rings[J].Journal of Mathematical Sciences,2010,171(2):248-295.
  • 5SHIN G.Prime ideals and sheaf representation of a pseudo symmetric ring[J].Trans.Amer.Math.Soc.,1973,(184):43-60.
  • 6LAMBEK J.On the representation of modules by sheaves of factor modules[J].Canad.Math.Bull,1971,14 (3):359-368.
  • 7KIM N K,LEE Y.Extensions of reversible rings[J].Pure Appl Algebra,2003,(185):207-233.
  • 8HONG C Y,KIM N K,KWAK T K.Extensions of generalized reduced rings[J].Algebra Colloq,2005,12(2):229-240.
  • 9HUH C.KIM H K,KIM,et al.Basic Examples and Extensions of Symmetric Rings[J].J.Pure Appl.Algebra,2005,(202):154-167.
  • 10王占平.Extensions of Symmetric Rings[J].Journal of Mathematical Research and Exposition,2007,27(2):229-235. 被引量:3

二级参考文献11

  • 1ANDERSON D D, CAMILLO V. Semigroups and rings whose zero products commute[J]. Comm Algebra, 1999, 27(6): 2847-2852.
  • 2KIN N K, LEE Y. Extensions of reversible rings[J]. J Pure Appl Algebra, 2003, 185; 207-223.
  • 3ANDERSON D D,CAMILLO V.Semigroups and rings whose zero products commute[J].Comm.Algebra,1999,27(6):2847-2852.
  • 4LAMBEK J.On the representation of modules by sheaves of factor modules[J].Canad.Math.Bull.,1971,14(3):359-368.
  • 5KIM N K,LEE Y.Extensions of reversible rings[J].J.Pure Appl.Algebra,2003,185:207-223.
  • 6MARKS G.Reversible and symmetric rings[J].J.Pure Appl.Algebra,2002,174:311-318.
  • 7KREMPA J,NIEWIECZERZAL D.Rings in which annihilators are ideals and their application to semigroup rings[J].Bull.Acad.Polon.Sci.Sér.Sci.Math.Astronom.Phys.,1977,25(9):851-856.
  • 8HUH C,LEE Y,SMOKTUNOWICZ A.Armendariz rings and semicommutative rings[J].Comm.Algebra,2002,80(2):751-761.
  • 9ANDERSON D D,CAMILLO V.Armendariz rings and Gaussian rings[J].Comm.Algebra,1998,26(7):2265-2272.
  • 10REGE M B,CHHAWCHHARIA S.Armendariz rings[J].Proc.Japan Acad.Ser.A Math.Sci.,1997,73(1):14-17.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部