期刊文献+

C-双有限domain与SM性质 被引量:3

SM of property C-bifinite domain
原文传递
导出
摘要 讨论了C-双有限domain的SM性质,并证明:(i)所有C-双有限domain具有SM性质;(ii)连续L-domain D是C-双有限domain当且仅当D具有SM性质当且仅当D上存在基B使得其理想完备化Id(B)是双有限domain. we consider the SM property of C-bifinite domains and show that (i)every C-bifinite domain has SM property;(ii)a continuous L-domain D is a C-bifinite domain if and only if it has SM property if and only if it has a basis B such that its ideal completeness Id(B)is a bifinite domain.
作者 吕振超 寇辉
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期16-20,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11371262)
关键词 C-双有限domain SM性质 L—domain C-bifinite domain SM Property L-domain
  • 相关文献

参考文献9

  • 1Hamrin G, V Stoltenberg-Hansen. Two categories of effective continuous cpos[J]. Theoretical Computer Science, 2006, 365: 226.
  • 2Abramsky S, Jung A. Domain theory, handbook of logic in computer science[M]. Oxford.. Oxford Uni- versity Press, 1994.
  • 3Gierz G, Hofmann K H, Keimal K, et al. Continu- ous lattices and domains[M]. Cambridge: Cambridge University Press, 2003.
  • 4Liu B, Xi X Y, Liu H. Lawson compactness on function spaces of domains[J]. Topology and its Ap- plications, 2010, 157: 654.
  • 5Liang J H , Keimel K. Compact Continuous L-do- mains[J]. Computers and Mathematics with Applica- tions, 1999, 38: 83.
  • 6Hofmann D, Waszkiewicz P. Approximation in quan- tale-enriched categories[J]. Topology and its Appli- cations, 2011, 158: 970.
  • 7Romaguera S, Schellekens M P, Valero O. Complex- ity spaces as quantitative domains of computation[J]. Topology and its Applications, 2011, 158: 855.
  • 8黄方平,梁基华,寇辉.开滤子Domain的分配性(英文)[J].四川大学学报(自然科学版),2006,43(5):992-995. 被引量:1
  • 9原雅燕,寇辉.关于函数空间的超连续性[J].数学年刊(A辑),2010,31(5):571-578. 被引量:4

二级参考文献9

  • 1XUXIAOQUAN,LIUYINGMING.REGULAR RELATIONS AND MONOTONE NORMAL ORDERED SPACES[J].Chinese Annals of Mathematics,Series B,2004,25(2):157-164. 被引量:4
  • 2J.H.LIANG,K.KEIMEL.Order Environments of Topological Spaces[J].Acta Mathematica Sinica,English Series,2004,20(5):943-948. 被引量:3
  • 3Gierz G, Hofmann K H. Contiuous Lattices and Domains[ M]. Berlin/Heidelberg:Springer Verlag, 2003.
  • 4Abramsky A, J ung A. Domain Theory[ M]//Abramsky S, et al. Handbook of Logic in Computer Science. Oxford: Oxford University Press, 1994.
  • 5Xie L, Song Y J. On distributive complete lattices for which the Scott topology has a basis of open filters[J]. Acta Mathematica Sinica (Chinese Series), 2000, 43(2) :213.
  • 6Wehrung F. Distributive semilattices as retracts of ultraboolean ones; functorial inverses without adjunction[J ]. J. Pure and Applied Algebra, 2005(202) :201.
  • 7Engelking R. Outline of General Topology[ M]. Warszawa. Pwn-polish Scientific Publishers, 1968.
  • 8Gratzer G. Gernaral Lattice Theory[ M]. Basel: Birkhauser Verlag, 1998.
  • 9Xiaoquan XU Jinbo YANG.Topological Representations of Distributive Hypercontinuous Lattices[J].Chinese Annals of Mathematics,Series B,2009,30(2):199-206. 被引量:18

共引文献3

同被引文献15

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部