摘要
为研究不适定的抽象Cauchy问题,Da Prato引入了正则半群,而Arendt则引入了积分半群的概念.deLaubenfels给出了这两种半群之间的联系.本文将delaubenfels的上述结论推广到了正则α-次预解族和积分α-次预解族上.最后给出这个定理的一些简单推论.
Regularized semigroups and integrated semigroups are introduced by Da Prato and Arendt re-spectively,to treat Cauchy problems which are not well-posed.deLaubenfels have studied the relation-ship between these two different semigroups.We give the relations between regularizedα-times resolv-ent families and integratedα-times resolvent families,which generalizes the corresponding results for regularized semigroups and integrated semigroups given by deLaubenfels.In the end we give some corol-laries.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第1期29-32,共4页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11371263)
教育部"新世纪优秀人才支持计划"基金(NCET-11-0344)
关键词
正则α-次预解族
(α
k)-正则预解族
分数阶微分方程
Regularizedα-times resolvent families
(a,k)-regularized families
Fractional differential e-quations