期刊文献+

正则α-次预解族与积分α-次预解族(英文)

Regularizedα-times resolvent families and integratedα-times resolvent families
原文传递
导出
摘要 为研究不适定的抽象Cauchy问题,Da Prato引入了正则半群,而Arendt则引入了积分半群的概念.deLaubenfels给出了这两种半群之间的联系.本文将delaubenfels的上述结论推广到了正则α-次预解族和积分α-次预解族上.最后给出这个定理的一些简单推论. Regularized semigroups and integrated semigroups are introduced by Da Prato and Arendt re-spectively,to treat Cauchy problems which are not well-posed.deLaubenfels have studied the relation-ship between these two different semigroups.We give the relations between regularizedα-times resolv-ent families and integratedα-times resolvent families,which generalizes the corresponding results for regularized semigroups and integrated semigroups given by deLaubenfels.In the end we give some corol-laries.
作者 苏晓燕 李淼
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期29-32,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11371263) 教育部"新世纪优秀人才支持计划"基金(NCET-11-0344)
关键词 正则α-次预解族 k)-正则预解族 分数阶微分方程 Regularizedα-times resolvent families (a,k)-regularized families Fractional differential e-quations
  • 相关文献

参考文献12

  • 1Arendt W. Vector-valued Laplace transforms and Cauchy problems[M]. Basel: Springer, 1987.
  • 2Zheng Q, Li M. Regularized semigroups and non- elliptic partial differential operators[M]. Beijing: Science Press, 2014.
  • 3Bajlekova E. Fractional evolution equations in ba- nach spaces[D]. BaIgarije: Eindhoven University of Techology, 2001.
  • 4Da Prato G. Semigroup regularization[J]. Ricerche Math, 1966, 15: 233.
  • 5deLaubenfels R. Integrated semigroups, C-semig- roups and the abstract Cauchy problem[J]. Semig- roup Forum, 1990, 41: 83.
  • 6Lizama C. Regularized solutions for abstract Volter- ra equations[J]. J Math Analysis Appl, 2000, 243: 278.
  • 7Prtiss J. Evolutionary Integral Equations and Appli- cations[M]. Basel: Birkb:user-Verlag, 1993.
  • 8Podlubny I. Fractional differential equations [M]. New York: Academic Press, 1999.
  • 9Li M. Regularized resolvent families[J]. Taiwan Residents J Math 2007, 11: 117.
  • 10Li K X, Peng J G. Fractional resolvents and frac- tional evolution equations [J]. Appl Math Lett, 2012, 25: 808.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部