期刊文献+

顺序同化不同时空分辨率LAI的冬小麦估产对比研究 被引量:39

Comparison of Winter Wheat Yield Estimation by Sequential Assimilation of Different Spatio-temporal Resolution Remotely Sensed LAI Datasets
下载PDF
导出
摘要 选择PyWOFOST模型为动态模型,以叶面积指数(LAI)为状态变量,遥感LAI为观测值,采用集合卡尔曼滤波(En KF)同化算法,研发了一种遥感LAI与作物模型同化的区域冬小麦产量估测系统。为消除云的污染,采用Savitzky-Golay(S-G)滤波算法重构时间序列MODIS LAI;通过构建地面观测LAI与3个关键物候期Landsat TM植被指数回归统计模型,获得区域TM LAI;通过融合3个关键物候期的TM LAI与时间序列S-G MODIS LAI,生成尺度转换LAI。对比分析3种不同时空分辨率的遥感LAI的同化精度,研究结果表明,同化尺度转换LAI获得了最高的同化精度,与官方县域统计产量相比,在潜在模式下,决定系数由同化前的0.24提高到0.47,均方根误差由602kg/hm2下降到478 kg/hm2。结果表明,遥感观测与作物模型的尺度调整对提高冬小麦同化模型精度具有重要作用,遥感LAI与作物模型的En KF同化方法是一种有效的区域作物产量估测方法。 Data assimilation method combines with remotely sensed data and crop growth model has become an important hotspot in crop yield forecasting. PyWOFOST model and remotely sensed LAI were respectively selected as the crop growth model and observations to construct a regional winter wheat yield forecasting scheme with EnKF algorithm. To eliminate cloud contamination, a Savitzky - Golay ( S - G) filtering algorithm was applied to the MODIS LAI products to obtain filtered LAIs. Regression models between field-measured LAI and Landsat TM vegetation indices were established and multi-temporal TM LAIs was derived. The TM LAI with time series of MODIS LAI was integrated to generate scale-adjusted LAI. Compared the assimilation accuracy using these three different spatio-temporal resolution remotely sensed data, validation results demonstrated that assimilating the scale-adjusted LAI achieved the best prediction accuracy, in potential mode, the determination coefficient (R2) increased from 0.24 which without assimilation to 0.47 and RMSE decreased from 602 kg/hm2 to 478 kg/hm2 at county level compared to the official statistical yield data. Our results indicated that the scale adjustment between remotely sensed observation and crop model greatly improved the accuracy of winter wheat yield forecasting. The assimilation of remotely sensed data into crop growth model with EnKF can provide a reliable approach for regional crop yield estimation.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第1期240-248,共9页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(41371326) '十二五'国家科技支撑计划资助项目(2012BAH29B02)
关键词 冬小麦 叶面积指数 产量估测 集合卡尔曼滤波 PyWOFOST模型 数据同化 Winter wheat Leaf area index Yield estimation Ensemble Kalman filter PyWOFOST model Data assimilation
  • 相关文献

参考文献16

  • 1陈劲松,黄健熙,林珲,裴志远.基于遥感信息和作物生长模型同化的水稻估产方法研究[J].中国科学:信息科学,2010,40(S1):173-183. 被引量:43
  • 2Fang H, Liang S, Hoogenboom G, et al. Corn-yield estimation through assimilation of remotely sensed data into the CSM- CERES- MAISE model[ J]. International Journey of Remote Sensing, 2008, 29 (10) :3011 - 3032.
  • 3靳华安,王锦地,柏延臣,陈桂芬,薛华柱.基于作物生长模型和遥感数据同化的区域玉米产量估算[J].农业工程学报,2012,28(6):162-173. 被引量:38
  • 4刘翔舸,黄健熙,秦军,王鹏新,徐同仁.基于GOES数据和弱约束变分的地表水热通量估算[J].农业机械学报,2014,45(1):236-245. 被引量:7
  • 5Dente L, Satalino G, Mattia F, et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield [ J]. Remote Sensing Environment, 2008, 112 (4) : 1395 - 1407.
  • 6Curnel L, de Wit A J W, Duveiller G. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS experiment[ J ]. Agricultural and Forest Meteorology, 2011, 151 (12) : 1843 - 1855.
  • 7de Wit A, Diepen C. Crop model data assimilation with the ensemble Kalman filter for improving regional crop yield forecasts[ J]. Agricultural and Forest Meteorology, 2007, 146 (1 -2) :38 -56.
  • 8Ma H, Huang J, Zhu D, et al. Estimating regional winter wheat yield by assimilation of time series of HJ - 1 CCD NDVI into WOFOST- ACRM model with ensemble Kalman filter[ J]. Mathematical and Computer Modelling, 2013,58( 3 -4) :759 -770.
  • 9Pellenq J, Boulet G. A methodology to test the pertinence of remote-sensing data assimilation into vegetation models for water and energy exchange at the land surface[ J]. Agronomie, 2004,24(4) :197 -204.
  • 10Zhao Y, Chen S, Shen S. Assimilating remote sensing information with crop model using Ensemble Kalman filter for improving LAI monitoring and yield estimation[ J]. Ecological Modelling, 2013, 270:30 - 42.

二级参考文献114

共引文献125

同被引文献525

引证文献39

二级引证文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部