期刊文献+

基于资源一号02C高分辨率数据的农业区土地利用分类 被引量:16

Classifications of Agricultural Land Use Based on High-spatial Resolution ZY1-02C Remote Sensing Images
下载PDF
导出
摘要 利用最小二乘支持向量机良好的非线性划分能力,基于资源一号02C高分辨率遥感数据,结合图像形状、纹理特征等信息,对农业区土地利用类型进行快速分类提取,结果表明:资源一号02C高分辨率数据可以快速有效地实现土地类型划分,加入特征信息后的图像分类精度大幅度提高,而最小二乘支持向量机的分类结果也十分理想,总体分类精度达到82.53%,Kappa系数达到0.807 1,高于传统图像分类方法,为利用国产高分辨率卫星进行土地类型划分提供了快速可行的方法。 Applying the good nonlinear classification ability of the least squares support vector machine (SVM) algorithm, this paper conduced the classification of land use in agricultural district from the high- spatial resolution ZY1 - 02C remote sensing images, which was based on the SVM method integrating information of shape and texture. It shows that the high-spatial resolution ZY1 -02C data can realize land classification quickly and effectively, and the classification accuracy is increased by adding the feature information. The least squares SVM classification results were ideal, the overall accuracy was 82.53% , and the Kappa coefficient was 0. 807 1. It has higher accuracy than traditional method and provides a feasible method for the classification of land use based on domestic high-spatial resolution satellite.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第1期278-284,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(41072244 41272360) 中国地质调查局资助项目(1212011220105)
关键词 农业区 土地利用 资源一号02C 最小二乘支持向量机 高分辨率遥感 Agricultural land Land use ZY1 -02C Least square support vector machine Highspatial resolution
  • 相关文献

参考文献22

二级参考文献167

共引文献4575

同被引文献248

引证文献16

二级引证文献346

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部