期刊文献+

面向矢量数据叠加分析的拓扑一致性处理研究 被引量:2

Study on Topology Consistency Processes for Vector Data Overlay Analysis
下载PDF
导出
摘要 在叠加分析、缓冲区分析、拓扑分析等各种矢量数据分析过程中,首要面对的便是矢量数据拓扑一致性问题。拓扑一致性处理是对GIS矢量数据中由于采集、存储、压缩、转换导致的空间拓扑关系不一致问题进行的拓扑处理,其使得待处理数据在容限范围内具有拓扑一致性,从而便于后续相关分析功能的进行。该文在分析和总结已有拓扑一致性处理算法的基础上,提出了一种更为高效的拓扑一致性处理改进算法,包括弧段间拓扑处理、节点与弧段间拓扑处理、节点间邻近搜索等核心过程。对比实验表明,该算法在保证拓扑一致性处理效果的基础上具有较高的处理性能,是一种实用性较强的拓扑一致性处理算法。 Topology consistency issues of vector data need to be faced with primary, which in various vector data analysis proces- ses including overlay analysis, buffer analysis and topological analysis. The topology consistency process is handling with incon- sistencies of spatial data topological relations, which generated by acquisition, storage,compression and conversion of GIS vector data It allows data to keep topology consistency within the tolerance range, so as to facilitate subsequent analysis functions. In this paper,a more efficient topology consistency processing improved algorithm is proposed, which is based on analyzing and summarizing the existing topology consistency processing algorithms. The algorithm contains three core processes, including arcs topology processing, vertexes and arcs topology processing and vertexes proximity searching. The comparison experiments show that the algorithm processing performance is improved and can ensure the processing results are correct, and it is a practi- cal topology consistency processing algorithm
出处 《地理与地理信息科学》 CSCD 北大核心 2015年第1期12-16,36,共6页 Geography and Geo-Information Science
基金 交通运输部科技项目(2012-364-X04-102) 中国科学院重点部署项目(KZZD-EW-07-01-001) 国家科技支撑计划项目(2011BAH06B03) 资源与环境信息系统国家重点实验室自主研究项目(088RAC00YA) 中国科学院国防科技创新基金项目(CXJJ-14-M13) 北京市科技专项(Z141101004414011)
关键词 矢量数据 叠加分析 均匀格网索引 拓扑一致性 vector data overlay analysis uniform grid index topology consistency
  • 相关文献

参考文献12

  • 1GODCHILD M K Statistical aspects of the polygon overlay prob- lem[J]. Harvard Papers on Geographic Information Systems, 1978,6:1-22.
  • 2HOFFMANN C M. Geometric and Solid Modeling[M]. New York: Morgan Kaufmann, 1989.
  • 3OTTMANN T, THEIMT G, ULLRICH C. Numerical stabilityof geometric algorithms[A]. Proceedings of the Third Annual Symposium on Computational Geometry[C]. ACM, 1987. 119- 125.
  • 4BLAKEMORE M. Generalization and error in spatial databases [J]. Cartographica, 1984,21 : 131- 139.
  • 5SALESIN D, STOLFI J, GUIBAS L. Epsilon geometry: Build- ing robust algorithms from imprecise computations[A]. Pro- ceedings of the Fifth Annual Symposium on Computational Ge- ometry[C]. ACM, 1989. 208-217.
  • 6DOUGENIK J. WHIRLPOOL: A geometric processor for poly- gon coverage data[A]. Proceedings of Auto-Carto 4[C]. 1980, 2:304-311.
  • 7CHRISMAN N R. Epsilon filtering: A technique for automated scale changing[A]. Technical Papers of the 43rd Annual Meet ing of the American Congress on Surveying and Mapping[C]. Washington DC, 1983. 322-331.
  • 8MILENKOVIC V J. Verifiable implementations of geometric al- gorithms using finite precision arithmetic[J]. Artificial Intelli- gence, 1988,37(1) :377-401.
  • 9PULLAR D V. Spatial overlay with inexact numerical data[A]. Proceedings Auto-Carto 10[C]. Baltimore, 1991. 313-329.
  • 10HARVEY F, VAUGLIN F. No fuzzy creep! A clustering al- gorithm for controlling arbitrary node movement[A]. Proceed- ings Auto-Carto 13[C]. Seattle, ASPRS/ASCM, 1997.

二级参考文献9

共引文献7

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部