期刊文献+

动态压缩感知综述 被引量:23

A Survey on Dynamic Compressed Sensing
下载PDF
导出
摘要 动态压缩感(Dynamic compressed sensing,DCS)知由视频信号处理问题引出,是压缩感知(Compressed sensing,CS)理论研究领域中新兴起的一个研究分支,旨在处理信号支撑集随时间发生变化的时变稀疏信号,较为成功的应用范例是动态核磁共振成像.本文首先介绍动态系统模型,给出时变稀疏信号支撑集缓慢变化的定义、时变稀疏信号的稀疏表示和感知测量的方法;其次,建立一个统一的时变稀疏信号重构模型,基于该模型对现有算法进行分类,简要综述时变稀疏信号的重构算法,并且对比分析算法的性能;最后,讨论动态压缩感知的应用,并对其研究前景进行展望. In video signal processing, dynamic compressed sensing(DCS) is a novel branch of compressed sensing(CS)theory for recovery of compressible, possibly with a slowly varying sparsity pattern, signal from a time sequence of noisy observations. Dynamic compressed sensing has been employed in dynamic magnetic resonance image reconstruction successfully. The system model for dynamic compressed sensing is first introduced, including definitions of slowly varying supports, sparse representations and stable measurement of the time-varying sparse signal. Then, a unified framework is formulated for reconstruction of the time-varying sparse signal. Based on the framework, classification is conducted for the existing algorithms whose main ideas, reconstruction procedures and performance are also commented briefly. Finally,the applications and future directions of dynamic compressed sensing are pointed out.
出处 《自动化学报》 EI CSCD 北大核心 2015年第1期22-37,共16页 Acta Automatica Sinica
基金 国家自然科学基金(61303233 61201263 61102110) 河北省高等学校科学技术研究青年基金(QN20131058) 河北省自然科学基金(F2014203062)资助~~
关键词 动态压缩感知 时变稀疏信号 动态测量 卡尔曼滤波 视频压缩感知 Dynamic compressed sensing(DCS) time-varying sparse signals dynamic measurement update Kalman filter video compressed sensing
  • 相关文献

参考文献68

  • 1Compressive sensing resources [Online], available: http:// dsp.riee.edu/cs, August 17, 2014.
  • 2Baraniuk R G. Compressive sensing [Lecture notes]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 3Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 2006, 52(1): 6- 18.
  • 4Cands E J, Romberg J, Tao T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5SimonD,著,张勇刚,李宁,奔粤阳,译.最优状态估计一卡尔曼,H∞及非线性滤波.北京:国防工业出版社,2013.
  • 6Vaswani N. Kalman filtered compressed sensing. In: Pro- ceedings of the 15th IEEE International Conference on Im- age Processing. San Diego, California, USA: IEEE, 2008. 893-896.
  • 7Vaswani N. LS-CS-residual (LS-CS): compressive sensing on least squares residual. IEEE Transactions on Signal Process- ing, 2010, 58(8): 4108-4120.
  • 8Vaswani N, Lu W. Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Transactions on Signal Processing, 2010, 58(9): 4595-4607.
  • 9Lu W, Vaswani N. Regularized modified BPDN for noisy sparse reconstruction with partial erroneous support and signal value knowledge. IEEE Transactions on Signal Pro- cessing, 2012, 60(1): 182-196.
  • 10Zhan J C, Vaswani N. Time invariant error bounds for modified-CS based sparse signal sequence recovery. In: Pro- ceedings of the 2013 IEEE International Symposium on In- formation Theory. Istanbul, Turkey: IEEE, 2013. 286-290.

二级参考文献291

共引文献1149

同被引文献237

引证文献23

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部