期刊文献+

拓扑结构对网络承载能力的影响 被引量:1

Influence of network topology on network capacity
原文传递
导出
摘要 通过建立3种典型的复杂网络模型及对应的输运模型,数值计算并仿真试验拓扑结构指标和网络承载能力的变化。结果显示:3种网络承载能力的数值计算结果和仿真试验结果基本吻合;核心节点的存在使得无标度网络的节点最大介数值所占比重高于其他网络,导致网络的承载能力最小;随机网络的节点最大介数值所占比重低于其他网络,导致承载能力最大;随着平均度的增大,各类型网络承载能力增加明显,但各种拓扑结构指标对承载能力提升的贡献不同。 Three typical complex network models and corresponding traffic routing models were established to carry out numerical computation and simulation of topological indicators and network capacity,and empirical analysis of how network capacity is influenced by network topology was conducted. The results show that numerical calculation results and experimental results of the capacity of three different networks were roughly consistent. With existence of the core node,scale-free network had the shortest average travel path,and the proportion of the largest betweenness was much higher than that in other networks,leading to minimum capacity of the scale-free network; the proportion of the largest betweenness of nodes in random network was lower than that in other networks,leading to maximum capacity of the random network. The increase of average degree resulted in significant increase of network capacity,but the contribution of different topological indicators was not the same. Understanding the quantitative relation between network topology and network capacity is beneficial to conducting effective prevention and intervention concerning dynamic processes in the network.
出处 《科技导报》 CAS CSCD 北大核心 2015年第1期86-89,共4页 Science & Technology Review
基金 黑龙江省教育厅科学技术研究项目(12531577) 黑龙江科技大学青年才俊培养计划项目(20120501)
关键词 复杂网络 承载能力 仿真 拓扑结构 complex network network capacity simulation topology
  • 相关文献

参考文献14

  • 1Watts D J, Strogatz S H. Collective dynamics of small world networks[J]. Nature, 1998, 393(6684): 440-442.
  • 2Barab6si A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
  • 3Albert R, Barab6si A L. Statistical mechanics of complex networks[J]. Reviews of Modem Physics, 2002, 74: 47-97.
  • 4Toroczkai Z, Bassler K E. Network dynamics: Jamming is limited in scale-free systems[J]. Nature, 2004, 428(6984): 716-716.
  • 5Arenas A, Diaz Guilera A, Guimera R. Communication in networks with hierarchical branching[J]. Physical Review Letters, 2001, 86(14): 3196.
  • 6Moreno Y, G6mez J B, Paehece A F. Instability of scale-free networks under node-breaking avalanches[J]. Europhysics Letters, 2002, 58(4): 630-636.
  • 7Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102.
  • 8Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degree distributions and their applications[J]. Physical Review E, 2001, 64(2): 026118.
  • 9田旭光,朱元昌,邸彦强.复杂网络抗毁性优化问题的研究[J].系统科学学报,2014,22(1):60-65. 被引量:7
  • 10瞿泽辉,王 璞,宋朝鸣,秦志光.Enhancement of scale-free network attack tolerance[J].Chinese Physics B,2010,19(11):7-12. 被引量:1

二级参考文献48

  • 1谭跃进 吕欣 吴俊 等.复杂网络抗毁性研究若干问题的思考.系统工程理论与实践,2008,(0):116-120.
  • 2Onnela J P, Saramaki J, Hyvonen J, Szabo G, Lazer D, Kaski D, Kertesz J and Barabasi A L 2007 Proceedings of the National Academy of Sciences 104 7332.
  • 3Wang P, Gonzalez M C, Hidalgo C A and Barabasi A L 2009 Science 324 1071.
  • 4Hu H, Myers S, Colizza V and Vespignani A 2009 Proceedings of the National Academy of Sciences 106 1318.
  • 5Yook S H, Jeong H and Barabasi A 2002 Proceedings of the National Academy of Sciences 99 13382.
  • 6Park J and Newman M E J 2003 Phys. Rev. E 68 026112.
  • 7Pastor-Satorras R, Vazquez A and Vespignani A 2001 Phys. Rev. Lett. 87 258701.
  • 8Albert R, Jeong H and Barabasi A L 1999 Nature 401 130.
  • 9Colizza V, Barrat A, Barthelemy M and Vespignani A 2006 Proceedings of the National Academy of Sciences 103 2015.
  • 10Li C J and Chen G R 2006 Modelling of Weighted Evolving Networks with Community Structures 370 869.

共引文献6

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部