期刊文献+

基于组合核函数SVM的说话人识别方法 被引量:3

Speaker recognition method based on combination of kernel functions of SVM
原文传递
导出
摘要 鉴于应用支持向量机进行说话人识别过度依赖于选择核函数的问题,提出一种基于组合核函数支持向量机(SVM)的说话人识别方法。对多项式核函数、径向基核函数进行线性加权,构建既具有全局核函数优点又具有局部核函数优点的组合核函数,并通过多重网格搜索调节权重系数使组合核函数适用于当前数据分布,确定组合核函数SVM的最优参数,实现对说话人的有效识别。对TIMIT数据集和含噪声数据集的仿真实验显示,基于组合核函数SVM的说话人识别性能明显优于单一的多项式核函数、径向基核函数和线性核函数。 In speaker recognition systems,if the original data distribution is unknown,the choice of inappropriate kernel functions will result in poor support vector machine(SVM) learning performance. Thus a speaker recognition method based on a multi-grid search of parameters and a combination of kernel functions is proposed in this paper. First,the method constructs a hybrid kernel function by linearly weighted polynomial and RBF kernels. Then it proposes a multi-grid search method to adjust the weights,and thus the hybrid kernel function can adapt to the current data distribution. Finally,a SVM classifier is trained to obtain the classification results. Simulation experiments on TIMIT datasets and noisy datasets show that the recognition performance of SVM classifiers using a combination of kernel functions is better than that using linear kernels,polynomial kernels,and RBF kernels.Therefore,the proposed method can effectively improve the performance of speaker recognition systems.
出处 《科技导报》 CAS CSCD 北大核心 2015年第1期90-94,共5页 Science & Technology Review
基金 黑龙江省教育厅科学技术研究项目(12533074)
关键词 说话人识别 支持向量机 组合核函数 多重网格搜索 speaker recognition support vector machine combination of kernel functions multi-grid search
  • 相关文献

参考文献16

  • 1Reynolds D A, Rose R C. Robust text-independent speaker identificationusing Gaussian mixture speaker models[J]. IEEE Transactions on Speech and Audio Processing, 1995, 3(1): 72-83.
  • 2Gish H, Schmidt M. Text-independent speaker identification[J]. IEEE Signal Processing Magazine, 1994, 11(4): 18-32.
  • 3Kinnunen T, Li H. An overview of text-independent speaker recognition: From features to supervectors[J]. Speech Communication, 2010, 52(1): 12-40.
  • 4Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1978, 26(1): 43-49.
  • 5Togneri R, Pullella D. An overview of speaker identification: Accuracy and robustness issues[J]. IEEE Circuits and Systems Magazine, 2011, 11 (2): 23-61.
  • 6Rosenberg A, Soong F. Evaluation of a vector quantization talker recognition system in text independent and text dependent modes[J]. Computer Speech and Language, 1987, 22(4): 143-157.
  • 7HigginsA L, Bahler L G, Porter J E. Voice identification using nearesl- neighbor distance measure[C]. IEEE International Conference on the Acoustics, Speech, and Signal Processing, Minneapolis, USA, April 27- 30, 1993.
  • 8Wang G W, Luo S X, He L, et al. Application BP neural network in the speaker recognition based on chaos particle swarm optimization algorithm[J] Advanced Materials Research. 2013. 765: 2805-2808.
  • 9刘雪燕,李明,张亚芬.基于PCA和多约简SVM的多级说话人辨识[J].计算机应用,2008,28(1):127-130. 被引量:4
  • 10You C H, Lee K A, Li H. GMM-SVM kernel with a Bhattacharyya- based distance for speaker recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(6): 1300-1312.

二级参考文献20

  • 1邱江涛,唐常杰,乔少杰,段磊,刘齐宏.基于加权频繁项集的文本分类规则挖掘[J].四川大学学报(工程科学版),2008,40(6):110-114. 被引量:3
  • 2王元珍,钱铁云,冯小年.基于关联规则挖掘的中文文本自动分类[J].小型微型计算机系统,2005,26(8):1380-1383. 被引量:13
  • 3武方方,赵银亮,蒋泽飞.基于密度聚类的支持向量机分类算法[J].西安交通大学学报,2005,39(12):1319-1322. 被引量:11
  • 4马金娜,田大钢.基于支持向量机的中文文本自动分类研究[J].系统工程与电子技术,2007,29(3):475-478. 被引量:14
  • 5印鉴,谭焕云.基于χ~2统计量的kNN文本分类算法[J].小型微型计算机系统,2007,28(6):1094-1097. 被引量:13
  • 6SUN B, LIU W J, ZHOU Q H. Hierarchical speaker identification using speaker clustering [ C]//IEEE Proceeding NLP s KE' 2003. Beijing: IEEE Press, 2003,299 - 304.
  • 7TSAI W H, CHENG S S, WANG H M. Automatic speaker cluste- ring using a voice characteristic reference space and maximum purity estimation [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4) : 1461 - 1471.
  • 8ZHANG W F, YANG Y C, WU Z H. Exploiting PCA classifiers to speaker recognition [ C]// Proceedings of the International Joint Conference on the Neural Networks. Portland: IEEE Press, 2003, 1 : 820 - 823.
  • 9BURGES C L C. A tutorial on support vector machines for pattern recognition [ J]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 121 - 167.
  • 10LIU M H, XIE Y L, YAO Z Q, et al. A new hybrid GMM/SVM for speaker verification [C]// The 18th International Conference on Pattern Recognition. Hong Kong: IEEE Press, 2006, 4:314 - 317.

共引文献14

同被引文献36

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部