期刊文献+

双层树型微通道热流耦合场数值研究

NUMERICAL STUDY ON HEAT-FLOW COUPLING FIELD IN DOUBLE-LAYER TREE-SHAPED MICROCHANNEL
下载PDF
导出
摘要 建立了双层树型微通道换热器三维模型,模拟分析了其热流耦合场。对比单、双层树型微通道换热器的最高温度及双层树型微通道在顺流、逆流、交叉流三种情况下的冷却效果及底面温度分布所占比例。底部热流密度qw=50 W·cm-2时,单层树型微通道底面最高温度为102.5℃,双层树型微通道底面最高温度低于63.38℃,底面温度低于60℃部分所占比例均高于60%。双层树型微通道冷却效果明显优于单层,在逆流方式下,双层树型微通道底面温度分布均匀,中心部分具有较低温度,有效改善了一般换热器散热不均而造成的中心部分温度过高的问题。 This work built a three- dimensional model of double- layer tree- shaped microchannel heat exchanger(MCHE),simulated and analyzed the heat-flow coupling field. The maximum temperature of single- layer MCHE wascompared with double-layer MCHE,and the cooling efficiency of tree-shaped MCHE under parallel flow,contrary flowand cross flow was analyzed. When bottom heat fluxes qw=50 W·cm^-2,The maximum temperature of single-layer MCHEis 102.5 ℃ and double-layer MCHE is 63.38 ℃. The ratio of bottom temperature under 60 ℃ is more than 60%. The coolingeffect of double-layer MCHE is obviously better than single-layer MCHE,and the temperature distribution of heatedsurface is uniform,the temperature of the centre part is lower,which effectively solved the high temperature in the centrepart due to the nonuniform heat dissipation.
出处 《真空与低温》 2015年第1期33-37,共5页 Vacuum and Cryogenics
基金 上海海事大学研究生创新能力培养专项资金资助项目(No:2014ycx037)
关键词 双层树型微通道 热流耦合 冷却 double-layer tree-shaped microchannel heat-flow coupling field cooling
  • 相关文献

参考文献15

  • 1Tuckerman D B,Pease R F W. High-Performance Heat Sink-ing for VLSI [J]. IEEE Electron Device Letter,1981,2(5):126-129.
  • 2Husain A,Kim K Y. Optimization of a microchannel heat sinkwith temperature dependent fluid properties[J]. Applied Ther-malEngineering,2008,28(8/9):1101-1107.
  • 3Mansoor M M,Wong K C,Siddique M. Numerical investiga-tion of fluid flow and heat transfer under high heat flux usingrectangular micro-channels[J]. International CommunicationsinHeatandMassTransfer,2012,39(2):291-297.
  • 4Lei C ,Xia G D,Zhou M Z,et al. Numerical simulation of fluidflow and heat transfer in a microchannel heat sink with offsetfan- shaped reentrant cavities in sidewall[J]. InternationalCommunications in Heat and Mass Transfer,2011,38( 5):577-584.
  • 5Xu J L,Song Y X,Zhang W,et al. Numerical simulations of in-terrupted and conventional microchannel heat sinks[J]. Inter-nationalJournalofHeatandMassTransfer,2008,51(25/26):5906-5917.
  • 6XieXL,LiuZJ,HeYL,etal.Numericalstudyoflaminarheattransfer and pressure drop characteristics in a water-cooledminichannel heat sink[J]. Applied Thermal Engineering,2009,29(1):64-74.
  • 7Chein R,Chen J. Numerical study of the inlet/outlet arrange-ment effect on microchannel heat sink performance[J]. Inter-national Journal of Thermal Sciences,2009,48( 8): 1627-1638.
  • 8Chong S H,Ooi K T,Wong T N. Optimisation of single anddouble layer counter flow microchannel heat sinks[J]. Ap-pliedThermalEngineering,2002,22(14):1569-1585.
  • 9Foli K,Okabe T,Olhofer M,et al. Optimization of micro heatexchanger: CFD analytical approach and multi-objective evo-lutionary algorithms[J]. International Journal of Heat andMassTransfer,2006,49(5/6):1090-1099.
  • 10Hung T C ,Yan W M,Li W P. Analysis of heat transfer char-acteristics of double-layered microchannel heat sink [J]. In-ternational Journal of Heat and Mass Transfer,2012,55:3090-3099.

二级参考文献11

  • 1董涛,陈运生,杨朝初,毕勤成,吴会龙,郑国平.仿蜂巢分形微管道网络中的流动与换热[J].化工学报,2005,56(9):1618-1625. 被引量:19
  • 2Bjorn P. Heat Transfer in Microchannels[J]. Mieroscale Thermophysical Engineering, 2001, 5 : 155- 175.
  • 3Garimella S V, Joshi Y K, BarCohen A. Thermal Challenges in Next Generation Electronic Systems Summary of Panel Presentations and Discussions [J]. IEEE Transactions on Components and Packa- ging Technologies,2002, 25(4): 56.5-569.
  • 4Zhang H Y, Joshi Y K, Wong T N. Fluid Flow and Heat Transfer in Liquid Cooled Foam Heat Sinks for Electronic Packages[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28 (2) : 272-280.
  • 5Liu Shutian, Zhang Yongcun, Liu Peng. Heat Transfer and Pressure Drop in Fractal Mierochannel Heat Sink for Cooling of Electronic Chips[J].Heat Mass Transfer, 2007, 44:221-227.
  • 6Darabi J, Ohadi M M, DeVoe D. An Electro--hy- drodynamic Polarization Micropump for Electronic Cooling[J].Mieroeleetr-- omesh System, 2001, 10 (1):98-106.
  • 7Tuekerman D B, Pease R F W. High--performance Heat Sink for VLSI[J]. IEEE Electron Device Let- ters, 1981,4: 126-129.
  • 8Bejan A, Errera M R. Deterministic Tree Network for Fluid Flow[J].Geometry for Minimal Flow Re- sistance between a Volume and One Point Fractals, 1997, 5(4): 685-695.
  • 9Alharbi A Y, Pence D V, Cullion R N,et al. Ther- mal Characteristics of Microscale Fractal -- like Branching Channels[J]. Journal of Heat Transfer, 2004, 126(5) :744-752.
  • 10Chen Y P, Cheng P. Heat Transfer and Pressure Drop in Fraetal Tree--like Microchannel Nest[J]. International Journal of Heat and Mass Transfer, 2002, 45:2643-2648.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部