期刊文献+

具有斑块结构的捕食-食饵系统的研究 被引量:1

Research on the Predator-Prey System with Two Species for Prey in Patchy Environment
下载PDF
导出
摘要 研究了一类具有斑块结构的Lotka-Volterra型捕食-食饵系统的动力学行为,讨论了该系统平衡点的存在性,通过构建适当的Lyapunov函数,给出了系统正平衡点的全局渐近稳定的充分条件. The dynamic behavior of Lotka-Volterra prey-predator system with two species for prey in patchyenvironment is studied and the existence of its equilibrium point is discussed. By constructing appropriateLyapunov functions, some sufficient conditions are given for the global asymptotic stability of a positiveequilibrium of this model.
作者 林琳 雒志学
出处 《温州大学学报(自然科学版)》 2015年第1期1-5,共5页 Journal of Wenzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(11061017) 甘肃省自然科学基金(1010RJZAO75)
关键词 斑块环境 捕食者 食饵 平衡点 稳定性 LYAPUNOV函数 Patchy Environment Predator Prey Equilibrium Point Stability Lyapunov Function
  • 相关文献

参考文献7

二级参考文献49

  • 1许飞,侯燕,林支桂.带时滞的具有阶段结构的捕食抛物型方程组[J].数学学报(中文版),2005,48(6):1121-1130. 被引量:11
  • 2马知恩.种群生态学的数学模型与研究[M].合肥:安徽教育出版社,1994..
  • 3Braza P A. The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing. SIAM J Appl Math, 63:889-904 (2003)..
  • 4Du Y H, Hsu S B. A diffusive predator-prey model in heterogeneous environment. J Differential Equations, 203:331-364 (2004).
  • 5Du Y H, Wang M X. Asymptotic behavior of positive steady-states to a predator-prey model. Proc Roy Soc Edinburgh Sect A, 136:759-778 (2006).
  • 6Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion, d Differential Equations, 131:79-131 (1996).
  • 7Hsu S B, Huang T W. Global stability for a class of predator-prey systems. SlAM J Appl Math, 55: 763-783 (1995).
  • 8May R M. Stability and Complexity in Model Ecosystems. Princeton, N J: Princeton University Press, 1973.
  • 9Peng R, Wang M X. Positive steady-states of the Holling-Tanner prey-predator model with diffusion. Proc Roy Soc Edinburgh Sect A, 135:149-164 (2005).
  • 10Saez E, Gonzalez-Olivares E. Dynamics of a predator-prey model. SIAM J Appl Math, 59:1867-1878 (1999).

共引文献17

同被引文献5

  • 1Bereta E,Solimano F,Takeuchi Y.Global stability and periodic orbits for two patch predator-prey diffusion-delay models[J].Math Biosci,1987(85):153-183.
  • 2Yang Kuang,Yasuhiro Takeuchi.Predator-prey dynamics in models of prey dispersal in two-patch invironments[J].Math Biosci, 1994,120:77-98.
  • 3Freedaman H I,Takeuchi Y.Global stability and predator dynamics in a model of prey dispersal in a patchy environment[J]. Nonlinear Anal TMA,1989(13):993-1002.
  • 4Colin W C.MATHEMATICAL BIOECONOMICS[M].Beijing:Wiley,2010:102-107.
  • 5谢旺生,翁佩萱.一类具有斑块扩散与反馈控制的捕食者-食饵模型周期解的存在性[J].华南师范大学学报(自然科学版),2012,44(1):42-47. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部