期刊文献+

基于光流速度分量加权的人体行为识别 被引量:2

Human Behavior Recognition Based on Weighted Optical Flow Velocity Component
下载PDF
导出
摘要 为了提高光流特征对人体行为的描述性,提出一种新的人体行为识别方法。首先,将提取的光流特征分解为u和v两个速度分量分别来描述行为,通过直接构造视觉词汇表分别得到不同行为两个速度分量的标准视觉词汇码本,并利用训练视频得到每个行为的不同分量的标准词汇分布;进而根据不同行为两个分量的标准视觉词汇码本,分别计算测试视频相应的速度分量的词汇分布,并利用与各行为两个速度分量的标准词汇分布的加权相似性度量进行行为识别;最后在KTH数据库和Weizmann数据库中进行实验。实验结果表明,与其它行为识别方法相比笔者提出的方法可以明显提高行为平均识别率。 In order to improve the descriptiveness of optical flow characteristic on human behavior, this paper proposes a kind of new human behavior recognition method. Firstly, the extracted optical flow characteristic is decomposed as 2 velocity components (u and v) to describe the behavior respectively, and then the standard visual vocabulary code book of 2 velocity components can be obtained via direct construction visual vocabulary table, and the testing video is utilized to obtain the distribution of standard vocabulary of different components of each behavior then, according to standard visual vocabulary code book of 2 components of different behavior, it is able to respectively calculate the vocabulary distribution of corresponding velocity component of testing video, and utilize the weighted similarity measurement of standard vocabulary distribution of 2 velocity components of each behavior to carry out behavior recognition; finally, the test is made in KTH database and Weizmann database; through comparison between experimental result and other behavior recognition methods, it can be found that the average recognition rate of behavior is obviously improved.
出处 《浙江理工大学学报(自然科学版)》 2015年第1期115-123,共9页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(61374022) 国家"863"高技术项目研究与发展计划项目(2009AA04Z139) 浙江省自然科学基金项目(Y1100028)
关键词 行为识别 光流特征 速度分量u和v 视觉词汇表 加权 behavior recognition optical flow characteristic velocity component u and v visual vocabulary table weighted
  • 相关文献

参考文献26

  • 1李瑞峰,王亮亮,王珂.人体动作行为识别研究综述[J].模式识别与人工智能,2014,27(1):35-48. 被引量:96
  • 2杜鉴豪,许力.基于区域光流特征的异常行为检测[J].浙江大学学报(工学版),2011,45(7):1161-1166. 被引量:20
  • 3Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C]// Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouver, BC, Can: [ s. n. ], 1981, 81: 674-679.
  • 4傅博,李文辉,陈博,王聪,王莹.基于加权光流能量的异常行为检测[J].吉林大学学报(工学版),2013,43(6):1644-1649. 被引量:4
  • 5Zhen X T, :ao L. A local descriptor based on Laplacian pyramid coding for action reeognition[J]. Pattern Recognition Letters, 2013, 34(15): 1899-1905.
  • 6Guo K, Ishwar P, Konrad J. Action recognition using sparse representation on covariance manifolds of optical flow[C]// 2010 7th IEEE International Conference on Advanced Video and Signal Based, AVSS 2010. Boston, MA, United States: IEEE Computer Society, 2010: 188-195.
  • 7Chaudhry R, Ravichandran A, Hager G, et al. Histograms of oriented optical flow and binet-canchy kernels onnonlinear dynamical systems for the recognition of human actions[C]// 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops: CVPR Workshops 2009. Miami, FL, United states: IEEE Computer Society, 2009 : 1932-1939.
  • 8Li W Q, Zhang Z Y, Liu Z (2. Action recognition based on a bag o{ 3d points[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops: CVPR Workshops 2010. San Francisco, CA, United states: IEEE Computer Society, 2010: 9-14.
  • 9王乔,雷航,郝宗波.基于整体能量模型的异常行为检测[J].计算机应用研究,2012,29(12):4782-4785. 被引量:3
  • 10Tom M, Venkatesh B R. Rapid human action recognition in H. 264/AVC compressed domain for video surveillance [C]// 2013 IEEE International Conference on Visual Communications and Image Processing, IEEE VCIP 2013. Kuching, Sarawak, Malaysia; IEEE Computer Society, 2013t 1-6.

二级参考文献179

  • 1POPPE R. Vision-based human motion analysis: an overview [J]. Computer Vision and Image Understanding, 2007, 104(2): 4 -18.
  • 2MITRA S, ACHARYA T. Gesture recognition: a survey [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3): 311- 324.
  • 3MECOCCI A, PANNOZZO M. A completely autonomous system that learns anomalous movements in advanced videosurveillance applications [C] /// 1EEE International Conference on Image Processing. London: IEEE, 2005:II-586 - 589.
  • 4CALDERARA S, CUCCHIARA R, PRATI A. Detection of abnormal behaviors using a mixture of Von Mises distributions [C]//IEEE Conference on Advanced Video and Signal Based Surveillanee. London: IEEE, 2007: 141- 146.
  • 5BOUTTEFROY P I. M, BOUZERDOUM A, PHUNG S L, et al. Abnormal behavior detection using a multi-modal stochastic learning approach [C]// International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Sydney: IEEE, 2008: 121- 126.
  • 6TEHRANI M A, KLEIHORST R, MEIJER P, et al. Abnormal motion detection in a real time smart camera systern [C]//3rd ACM/IEEE International Conference on Distributed Smart Cameras. Como: IEEE, 2009: 1- 7.
  • 7DATTA A, SHAH M, I.()B() N D V. Person on-per son violence detection in video data [C] // Proceedings of the 16th International Conference on Pattern Recognition. Quebec City: IEEE, 2002:433-438.
  • 8CHEN Yu-feng, LIANG Guo yuan, LEE Ka-keung, el al. Abnormal behavior detection by muhi-SVM-based Baycsian network [C]// International Conference on Information Acquisition. Seogwipo-si: IEEE, 2007 : 298 - 303.
  • 9XIANG Tao, GONG Shao gang. Incremental and adaptive abnormal behavior detection [J]. Computer Vision and Image Understanding, 2008, 111(1): 59- 73.
  • 10FATHI A, MORI G. Action recognition by learning mid-level motion features [C] // IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008:1-8.

共引文献118

同被引文献18

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部