期刊文献+

在MVBVF条件下的加权可积性

Weighted Integrability under MVBVF Condition
下载PDF
导出
摘要 将系数数列的MVBV条件推广到函数的MVBV条件,分别给出了MVBV条件下正弦积分与余弦积分加权可积的充分必要条件,并利用Cauchy收敛准则、分部积分和适当放缩等数学方法进行证明,从而进一步完善了三角级数可积性的理论。 This paper generalizes MVBV condition of coefficient series to MVBV condition of function, gives sufficient and necessary condition of sine integral and cosine integral under MVBV condition respectively, and utilizes Cauchy convergence criterion, integration by parts, suitable scaling and other mathematical methods for confirmation so as to further perfect the integrability theory of trigonometric series.
作者 郭燕蓉
出处 《浙江理工大学学报(自然科学版)》 2015年第1期130-134,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 加权可积性 正弦积分 余弦积分 均值有界变差 weighted integrability sine integral cosine integral bounded variation of mean value
  • 相关文献

参考文献3

  • 1Boas Jr R P. Integrability of trigonometric series (III) [J]. The Quarterly Journal of Mathematics, 1952, 3 (1) : 217-221.
  • 2Heywood P. On the integrability of functions defined by trigonometric series [J]. The Quarterly Journal of Mathematics, 1954, 5(t): 71-76.
  • 3Wang M Z, Zhou S P. Applications of MVBV condition in L1 integrability[J]. Acta Math Hungar, 2010, 129 (I) : 70-80.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部