期刊文献+

分组有界变差与几乎单调递减的关系

Relationship between Grouped Bound Variation and Almost Monotonic Decreasing
下载PDF
导出
摘要 在Fourier分析中,对一些经典定理单调性的推广很有意义。探讨了分组有界变差与几乎单调递减之间的关系;利用数列本身特性,采用构造的方法,给出平凡的数列,并结合三角级数的一致收敛性等相关定理,构造更具有实用价值的数列证明了两者的互不包含关系。 In Fourier analysis, it is of great significance for the popularization of monotonicity of some classic theorems. This paper discusses the relationship between group bounded variation and almost monotonic decreasing. It makes use of characteristic of series, and adopts construction method to give ordinary series. In addition, it combines with uniform convergence and other relevant theorems of trigonometric series to construct the series with more practical value so as to prove mutual exclusive relationship between them.
作者 陈晓丹
出处 《浙江理工大学学报(自然科学版)》 2015年第1期146-148,共3页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 分组有界变差 几乎单调递减 互不包含关系 group bounded variation almost monotonic decreasing mutual exclusive relationship
  • 相关文献

参考文献2

  • 1Young W H. On the Fourier series of bounded functions [J]. Proc London Math Soc, 1913, 12: 41-70.
  • 2Le R J, Zhou S P. A new condition for the uniformconvergence of certain trigonometric series [J]. Acta Math. Hungar, 2005, 108: 161-169.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部