期刊文献+

二元三次函数方程的解及在模糊Banach空间上的稳定性 被引量:1

General solution and stability of bi-cubic functional equation
原文传递
导出
摘要 设X和Y是实向量空间,映射f:X2→Y称为二元三次函数,x1,x2,y1,y2∈X,都满足下面的二元三次函数方程:f(2x1+x2,2y1+y2)+f(2x1+x2,2y1-y2)+f(2x1-x2,2y1+y2)+f(2x1-x2,2y1-y2)=4f(x1+x2,y1+y2)+4f(x1-x2,y1+y2)+24f(x1,y1+y2)+4f(x1+x2,y1-y2)+4f(x1-x2,y1-y2)+24f(x1,y1-y2)+24f(x1+x2,y1)+24f(x1-x2,y1)+144f(x1,y1)。研究二元三次函数方程解的一般形式,证明了在模糊Banach空间上该方程的Hyers-Ulam稳定性。 Let X and Y be real vector spaces. A mapping f: X^2→Y is called bi-cubic if it satisfies f( 2x1+ x2,2y1+ y2) + f( 2x1+ x2,2y1-y2) + f( 2x1-x2,2y1+ y2) +f( 2x1-x2,2y1-y2) = 4f( x1+ x2,y1+ y2) + 4f( x1-x2,y1+ y2) + 24f( x1,y1+ y2) +4f( x1+ x2,y1-y2) + 4f( x1-x2,y1-y2) + 24f( x1,y1-y2) + 24f( x1+ x2,y1) +24f( x1-x2,y1) + 144f( x1,y1)for all x1,x2,y1,y2∈X. The solution of this equation is obtained and the Hyers-Ulam stability of it is proved on fuzzy Banach spaces.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第2期60-66,共7页 Journal of Shandong University(Natural Science)
关键词 三次函数方程 二元三次函数方程 HYERS-ULAM稳定性 模糊Banach空间 cubic functional equation bi-cubic functional equation Hyers-Ulam stability fuzzy Banach space
  • 相关文献

参考文献2

二级参考文献27

  • 1N. BRILLOUET-BELLOUT, J. BRZDEK, K. CIEPLINSKI. On some recent developments in Ularn's type stability. Abstr. Appl, Anal., 2012, Art. ID 716936, 41 pp.
  • 2S. M. JUNG. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications, 48. Springer, New York, 2011.
  • 3K. CIEPLINSKI. Generalized stability of multi-additive mappings. Appl. Math. Letters, 2010, 23: 1291- 1294.
  • 4K. CIEPLINSKI. Stability of multi-additive mappings in non-Archimedean normed spaces. J. Math. Anal. Appl., 2011, 373: 376-383.
  • 5K. CIEPLINSKI. Stability of multi-additivetnappings in {3-Banach spaces. Nonlinear Anal., 2012, 75: 4205- 4212.
  • 6W. PRAGER, J. SCHWAIGER. Multi-affine and multi-Jensen functions and their connection with generalized polynomials. Aequationes Math., 2005, 69(1-2): 41-57.
  • 7W. PRAGER, J. SCHWAIGER. Stability of the multi-Jensen equation. Bull. Korean Math. Soc., 2008, 45(1): 133-142.
  • 8K. CIEPLINSKI. On multi-Jensen functions and Jensen difference. Bull. Korean Math. Soc., 2008, 45(4): 729-737.
  • 9K. CIEPLINSKI. Stability of multi-Jenssen equation. J. Math. Anal. Appl., 2010, 363: 249-254.
  • 10K. CIEPLINSKI. Stability of Multi-Jensen Mappings in Non-Archimedean Normed Spaces. Sringer Optim. Appl., 52, Springer, New York, 2012.

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部