摘要
设X和Y是实向量空间,映射f:X2→Y称为二元三次函数,x1,x2,y1,y2∈X,都满足下面的二元三次函数方程:f(2x1+x2,2y1+y2)+f(2x1+x2,2y1-y2)+f(2x1-x2,2y1+y2)+f(2x1-x2,2y1-y2)=4f(x1+x2,y1+y2)+4f(x1-x2,y1+y2)+24f(x1,y1+y2)+4f(x1+x2,y1-y2)+4f(x1-x2,y1-y2)+24f(x1,y1-y2)+24f(x1+x2,y1)+24f(x1-x2,y1)+144f(x1,y1)。研究二元三次函数方程解的一般形式,证明了在模糊Banach空间上该方程的Hyers-Ulam稳定性。
Let X and Y be real vector spaces. A mapping f: X^2→Y is called bi-cubic if it satisfies f( 2x1+ x2,2y1+ y2) + f( 2x1+ x2,2y1-y2) + f( 2x1-x2,2y1+ y2) +f( 2x1-x2,2y1-y2) = 4f( x1+ x2,y1+ y2) + 4f( x1-x2,y1+ y2) + 24f( x1,y1+ y2) +4f( x1+ x2,y1-y2) + 4f( x1-x2,y1-y2) + 24f( x1,y1-y2) + 24f( x1+ x2,y1) +24f( x1-x2,y1) + 144f( x1,y1)for all x1,x2,y1,y2∈X. The solution of this equation is obtained and the Hyers-Ulam stability of it is proved on fuzzy Banach spaces.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2015年第2期60-66,共7页
Journal of Shandong University(Natural Science)