期刊文献+

基于多通道盲复原和改进K-SVD模型的图像恢复 被引量:6

Image Restoration Based on Multi-channel Blind Restoration and Sparse Representation Method
下载PDF
导出
摘要 图像盲复原(IBR)问题一直是图像处理中的重要研究课题。目前空间不变的多通道图像盲复原算法研究较为普遍,这种算法具有较好的盲去模糊效果,但是对噪声的抑制能力不足,特别是对含有大量噪声的低分辨率图像而言,消噪效果较差。基于K-奇异值分解(K-SVD)的模型能够有效地处理噪声方差较大的图像,但是不能自适应图像的稀疏先验性。为了解决上述问题,在全变分(TV)多通道IBR算法处理的基础上,结合一种改进的K-SVD消噪模型的优势,提出了一种新的组合图像恢复方法。改进的K-SVD模型考虑了图像特征系数的稀疏先验知识和最大化稀疏度,具有自适应的消噪鲁棒性。分别采用模拟的和真实的低分辨率图像(毫米波图像)进行测试,与采用单一的多通道盲恢复和图像消噪算法相比,实验结果表明所提出的图像恢复方法具有较好的视觉效果和较高的信噪比。 The problem of image blind restoration ( IBR) has been the important research issue in image process-ing. At present, the research of multi-channel with space invariant is very common. This algorithm behaves certain advantages in blind de-blurring, but it is limited to denoise images. Especially, to low resolution ( LR ) images, which contain much unknown noise, the restored effect is worse only using the multi-channel restoration technique. K-mean based singular value decomposition ( K-SVD) model can denoise images with large noise variance, however, it is not self-adaptive to an image’ s priors. To solve this defect, on the basis of processed results by the total variation ( TV) based multi-channel restoration algorithm, further combined a modified K-SVD model’ s advantage in denoising images, a novel combined image restoration method is discussed here. This modified K-SVD model considers the sparse priors and maximize sparsity of image feature coefficients and behaves self-adaptively denoising robust. In test, the artificial LR image and real LR image ( i. e. millimeter wave image) are used, and compared with the single multi-channel IBR method and the single image denoising method, experimental results show that our method behaves bet-ter visual effect and higher values of signal noise ratio.
出处 《激光杂志》 CAS 北大核心 2015年第1期5-9,共5页 Laser Journal
基金 国家自然科学基金资助项目(61373098 61370109)
关键词 多通道 图像盲复原 稀疏表示 稀疏字典 毫米波图像(MMW) 图像消噪 Multi-channel Image blind restoration Sparse representation Sparse dictionary Milli-meter (MMW) image Image denoising
  • 相关文献

参考文献16

二级参考文献174

  • 1段彩艳,李一民,潘晓露,魏志强.基于频谱分析的退化图像模糊类型识别[J].云南大学学报(自然科学版),2009,31(S2):9-11. 被引量:2
  • 2ZHANG Chunmei,YIN Zhongke,CHEN Xiangdong,XIAO Mingxia.Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J].Chinese Science Bulletin,2005,50(23):2672-2677. 被引量:14
  • 3Ross T,Worrell S, Velten V, et al. Standard SAR ATR evaluation experiment using the MSTAR public release data set[J]. Proceeding of SPIE, 1998, 3370: 566-573.
  • 4Zhao Q, Principe J C, Brennan V L, et al. Synthet- ic aperture radar automatic target recognition with three strategies of learning and representation[J]. Optical Engineering, 2000, 39(5): 1230-1244.
  • 5Bryant M, Garber F. SVM classifier applied to the MSTAR public data set[J]. Proceeding of SPIE, 1999, 3721:355-359.
  • 6Zhao Q, Principe J C. Support vector machine for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 643-654.
  • 7Chin T J, Schindler K, Suter D. Incremental kernel SVD for face recognition with image sets[C] // proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR), Southampton, United Kingdom, 2006.
  • 8Cristianini N, Shawe-Taylor J. Kernel Methods for Pattern Analysis[M]. England: Cambridge University Press, 2004.
  • 9董怡,金伟其,张淼.数学形态学滤波在红外图像去噪中的应用研究[J].激光与红外,2007,37(8):795-798. 被引量:15
  • 10Do M N, Vetterli M. Contourlet:A directional multiresolution image representation [ C ]//Proc. of IEEE International Conference on Image Processing, IEEE Press ,2002 : 357 - 360.

共引文献121

同被引文献55

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部