期刊文献+

捕鱼算法优化核极限学习机的微博热点话题预测 被引量:5

Hot topic prediction of micro-blog based on kernel extreme learning machine and fishing algorithm
下载PDF
导出
摘要 微博热点话题预测对网络舆情控制与管理具有重要意义,针对微博网络热点话题的随机性、非线性以及核极限学习的隐层权值和隐层阈值优化难题,提出一种捕鱼算法优化在核极限学习的微博热点话题预测模型。首先将微博网络热点话题历史样本划分训练样本和测试样本集,然后采用在核极限学习对微博热点话题训练样本进行学习与建模,并采用捕鱼算法优化在线极限学习的隐层权值和隐层阈值,最后采用微博热点话题测试样本对其性能进行测试。实验结果表明,本文模型可以描述微博热点话题的发展趋势,提高了网络热点话题的预测精度,而且性能优于其它网络热点话题预测模型。 hot topic prediction of micro-blog has a important meaning to control and manage public opinion in net-work, according to the micro-blog network hot randomness, nonlinearity and online extreme learning hidden layer weights and hidden layer threshold optimization problems, this paper put forward a hot topic prediction model of micro-blog based on online extreme learning machine by fishing algorithm in this paper. Firstly, historical samples of hot topic for micro-blog are divided into training samples and testing samples set, and secondly, extreme learning machine is used to learn training samples of micro-blog hot topic, finally, test samples of micro-blog hot topic are used to test the performance. The experimental results show that the proposed model can describe the development trend of micro Bo hot topics, improves the prediction accuracy of hot topic, and the performance is better than that of other network hot topic prediction model.
作者 姬建新
出处 《激光杂志》 CAS 北大核心 2015年第1期128-131,共4页 Laser Journal
基金 陕西省科技攻关项目(2013JM8037)
关键词 网络微博 在线性极限学习 热点话题 捕鱼算法 micro-blog extreme learning machine hot topic fishing algorithm
  • 相关文献

参考文献14

  • 1王来华.舆情研究概论——理论、方法和现实热点[M】.天津:天津社会科学院出版社,2007.
  • 2廉捷,周欣,曹伟,刘云.新浪微博数据挖掘方案[J].清华大学学报(自然科学版),2011,51(10):1300-1305. 被引量:120
  • 3刘志明,刘鲁.微博网络舆情中的意见领袖识别及分析[J].系统工程,2011,29(6):8-16. 被引量:212
  • 4张晨逸,孙建伶,丁轶群.基于MB-LDA模型的微博主题挖掘[J].计算机研究与发展,2011,48(10):1795-1802. 被引量:166
  • 5毛佳昕,刘奕群,张敏,马少平.基于用户行为的微博用户社会影响力分析[J].计算机学报,2014,37(4):791-800. 被引量:77
  • 6Ajsumait L, BarbardD, Domeniconi C. On - line Ida: A-daptive topic models for mining text streams with applica-tions to topic detection and tracking [ C]. Eighth IEEEInter-national Conference on. IEEE, 2008 : 3-12.
  • 7郭浩,陆余良,王宇,张亮.基于信息传播的微博用户影响力度量[J].山东大学学报(理学版),2012,47(5):78-83. 被引量:31
  • 8Liuz, Huang W, Zheng Y, et al. Automatic keyphrase ex-traction via topic decomposition [ C ]. Proceedings of the2010 Conference on Empirical Methods in Natural LanguageProcessing. Association for Computational Linguistics,2010: 366-376.
  • 9Fengy, Lapata M. Topic models for image annotation andtext illustration [ C ]. The 2010 Annual Conference of theNorth American Chapter of the Association for Computation-al Linguistics. Association for Computational Linguistics,2010: 831-839.
  • 10Mimnod, Wallach H M, Talley E,et al. Optimizing se-mantic coherence in topic models [ C ]. Proceedings of theConference on Empirical Methods in Natural Language Pro-cessing, 2011 : 262-272.

二级参考文献85

  • 1欧健文,董守斌,蔡斌.模板化网页主题信息的提取方法[J].清华大学学报(自然科学版),2005,45(S1):1743-1747. 被引量:70
  • 2周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:155
  • 3营利荣.面向不确定性决策的杂合粗糙集方法及其应用[M].北京:科学出版社,2008.
  • 4菅利荣,刘思峰,方志耕,党耀国,朱建军,吴和成,姚天祥.基于优势粗糙集的教学研究型大学学科建设绩效评价[J].管理工程学报,2007,21(3):132-136. 被引量:14
  • 5百度百科.网络舆情[Z].http://baike.baidu.com/view/2143779.htm.
  • 6Lazarsfield P, et al. The people's choice[M]. New York : Columbia University Press, 1948.
  • 7Coleman,et al. The diffusion of an innovation among physicians [J]. Sociomtry, 1957,20: 253- 270.
  • 8Rogers E M. Diffusion of innovations [M]. New York : Free Press, 1995.
  • 9Valente T W. Network models of the diffusion of innovations[M]. Cresskill,NJ :Hampton Press,1995.
  • 10Chan K K, Misra S. Characteristics of the opinion leader--a new dimension[J]. Journal of Advertising, 1990,19:53-60.

共引文献605

同被引文献49

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部