期刊文献+

分子动力学研究钚晶体中的氦泡迁移与合并 被引量:1

Molecular-dynamics study transfer and combination of helium bubbles in plutonium crystal
原文传递
导出
摘要 本文建立了钚材料自辐照老化中的氦泡原子模型,用修正嵌入原子多体势和并行分子动力学计算方法,模拟了氦泡在钚晶格中的稳定结构、氦泡的迁移合并、以及氦泡生长引起的晶体缺陷等,并分析了氦泡长大机制及由氦泡引起的钚晶体体积变化。计算结果表明,氦原子聚集成泡现象与金属Ti中氦原子聚集成泡行为一致,氦泡长大遵循自捕陷和冲出位错环机制,氦泡周围的缺陷随着氦泡的生长加剧,仅由氦泡引起的体积肿胀很小,体积演化经历了一个先突然增大到体积膨胀的上限,然后随弛豫时间逐渐减小到最终体积的过程,中间有一个自我修复或缺陷恢复的阶段。研究结果提高了对氦泡长大机理及氦泡相互作用规律的理解。 The paper build the characterization and modeling of helium bubbles in self-irradiated plutonium (Pu) materials. Using parallel molecular dynamics method with the embedded atom method (EAM) potential, we imitated the stable structures and combination of helium bubbles in 5-plutonium crystal lattice, and the lattice damage generated by helium bubbles. We also analyzed the grown mechanism of helium bubbles and bulk swell of Pu crystal due to helium bubbles. The calculations reveal that the helium gathering and generate bubbles like their behavior in Ti metals, helium bubbles grow up following the self-capture and dislocation dash out mechanism, and defects in Pu metals prick up by helium bubbles grow up. We realize that the bulk swell of Pu crystal due to helium bubbles is very small, and there is a self-improvement or lattice comeback process in bulk transformation, because the bulk enlarged to upper limit fleet at the first, and then monished to final volume with time of relax gently. The research improved our understanding of helium cluster grow up and interactional regulation.
出处 《计算机与应用化学》 CAS 2015年第1期107-110,共4页 Computers and Applied Chemistry
基金 中物院院预研资助项目
关键词 氦泡 嵌入原子多体势 并行分子动力学方法 plutonium, helium bubbles, embedded atom method potential, parallel molecular dynamics method
  • 相关文献

参考文献23

  • 1Wolfer W : Radiation effects in plutonium-What is known? Where should we go from here?. Los Alamos Science 2000, 26(2): 274-285.
  • 2Cooper N G. Challenges in Plutonium Science. USA: Los Alamos Laboratory, 2000.
  • 3Wolfer W C Oudot B, Baclet N. Reversible expansion of gallium-stabilized 6-plutonium. Journal of Nuclear Materials, 2006, 359(3): 185-191.
  • 4Chung B W, Thompson S R, L Ema K E, et al. Evolving density and static mechanical properties in plutonium from self-irradiation. Journal of Nuclear Materials, 2009, 385(1):91-94.
  • 5Valone S M, Baskes M I. Self-irradiation cascade simulations in plutonium metal: Model behavior at high energy. Journal of Computer Aided Materials Design, 2007, 14 (3):357-365.
  • 6Dremov V, Sapozhnikov P, Ku Tepov A, et al. Atomistic simulations of helium dynamics in a plutonium lattice. Physical Review B, 2008, 77(22): 430621-430629.
  • 7Chung B W, Thompson S R, Woods C H, et al. Density changes in plutonium observed from accelerated aging using Pu238 enrichment. Journal of Nuclear Materials, 2006, 355(1-3):142- 149.
  • 8Schwartz A J, Wall M A, Wolfer W C: et al. Advanced transmission electron microscopy of Pu alloys, UCRL2JC2151536. USA: Lawrence Livermore National Laboratory, 2003.
  • 9Valone S M, Baskes M I, Martin R L, et al. Atomistic model of helium bubbles in gallium-stabilized plutonium alloys. Physical Review B, 2006, 73(21):2142091-21420911.
  • 10Pochet P. Modeling of aging in plutonium by molecular dynamics. Nuclear Instruments and Methods in Physics Research B, 2003, 202(complete):82-87.

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部