期刊文献+

基于稀疏表示的高光谱数据压缩算法 被引量:11

Hyperspectral Data Compression Based on Sparse Representation
下载PDF
导出
摘要 如何降低高光谱图像大规模数据的存储和传输代价一直是学者们关心的问题。该文提出一种基于稀疏表示的高光谱数据压缩算法,通过一种波段选择算法构造训练样本集合,利用训练得到的基函数字典对高光谱数据所有波段进行稀疏编码,并对表示结果中非零元素的位置和数值进行量化和熵编码,从而实现高光谱图像压缩。实验结果表明该文算法与3维小波相比具有更好的非线性逼近性能,其率失真性能明显优于3D-SPIHT,并且在光谱信息保留上具有巨大的优势。 How to reduce the storage and transmission cost of mass hyperspectral data is concerned with growing interest. This paper proposes a hyperspectral data compression algorithm using sparse representation. First, a training sample set is constructed with a band selection algorithm, and then all hyperspectral bands are coded sparsely using a basis function dictionary learned from the training set. Finally, the position indices and values of the non-zero elements are entropy coded to finish the compression. Experimental results reveal that the proposal algorithm achieves better nonlinear approximation performance than 3D-DWT and outperforms 3D-SPIHT. Besides, the algorithm has better performance in spectral information preservation.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第1期78-84,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61172154) 国家自然科学基金重点项目(61331020) 国家973计划项目(2010CB731904) 中国科学院光电研究院雏鹰计划资助课题
关键词 图像处理 数据压缩 高光谱遥感 稀疏表示 Image processing Data compression Hyperspectral remote sensing Sparse representation
  • 相关文献

参考文献21

  • 1Huang B and Sriraja Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection[J]. Remote Sensing, 2006, 63650L-63650L-8.
  • 2Mielikainen J. Lossless compression of hyperspectral images using lookup tables[J]. IEEE Signal Processing Letters, 2006, 13(3): 157-160.
  • 3Mielikainen J and Toivanen P. Lossless compression of hyperspectral images using a quantized index to lookup tables[J]. IEEE Geoscience and Remote Sensing Letters, 2008 5(3): 474-478.
  • 4Mielikainen J and Huang B. Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length[J]. IEEE Geoscienee and Remote Sensing Letters, 2012, 9(6): 1118-1121.
  • 5Cheng K and Dill J. Hyperspectral images loss]ess compression using the 3D binary EZW algorithm[C]. SPIE Electronic Imaging, International Society for Optics and Photonics, 2013: 865515-865515-8.
  • 6Penna B, Tillo T, Magli E, et aL. Transform coding techniques for lossy hyperspectral data compression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1408-1421.
  • 7Tang X and Pearlman W A. Three-dimensional Wavelet- Based Compression of Hyperspectral Images[M]. Hyperspectral Data Compression, Springer US 2006: 273-308.
  • 8Rucker J T, Fowler J E, and Younan N H. JPEG2000 coding strategies for hyperspectral data[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005: 1-4.
  • 9Penna B Tillo T, Magli E, et al.. Progressive 3-D coding of hyperspectral images based on JPEG 2000[J]. IEEE Geoseience and Remote Sensing Letters, 2006, 3(1): 125-129.
  • 10Chang Chein-I. Hyperspectral Data Exploitation: Theory and Applications[M]. New York: John Wiley, 2007: 379-407.

同被引文献120

  • 1赵齐乐,刘经南,葛茂荣.GPS导航星座及低轨卫星的精密定轨理论和软件研究[J].武汉大学学报(信息科学版),2005,30(4):375-375. 被引量:6
  • 2陈祖林,续正瑞,聂慧芳,张汝学,金嗣芳.血液成分对光吸收规律的实验研究[J].中国激光,1994,21(1):77-80. 被引量:15
  • 3胡雄,曾桢,张训械,张冬娅,肖存英.大气GPS掩星观测反演方法[J].地球物理学报,2005,48(4):768-774. 被引量:51
  • 4徐京萍,张柏,蔺钰,宋开山,段洪涛,王宗明.结合高光谱数据反演吉林石头口门水库悬浮物含量和透明度[J].湖泊科学,2007,19(3):269-274. 被引量:20
  • 5Wright J, Yang A Y, Ganesh A, et al. Robust face recognitionvia sparse representation[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence , 2009, 31(2): 210-227.
  • 6Yang M, Zhang D, Yang J, et al. Robust sparse coding for facerecognition[C] //Proceedings of IEEE Conference on ComputerVision and Pattern Recognition. Los Alamitos: IEEE ComputerSociety Press, 2011: 625-632.
  • 7Deng W H, Hu J N, Guo J. Extended SRC: undersampled facerecognition via intraclass variant dictionary[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2012, 34(9):1864-1870.
  • 8Wagner A, Wright J, Ganesh A, et al. Toward a practical facerecognition system: robust alignment and illumination bysparse representation[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2012, 34(2): 372-386.
  • 9Majumdar A, Ward R K. Classification via group sparsity promotingregularization[C] //Proceedings of IEEE InternationalConference on Acoustics, Speech and Signal Processings. LosAlamitos: IEEE Computer Society Press, 2009: 861-864.
  • 10Elhamifar E, Vidal R. Robust classification using structuredsparse representation[C] //Proceedings of IEEE Conference onComputer Vision and Pattern Recognition. Los Alamitos: IEEEComputer Society Press, 2011: 1873-1879.

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部