期刊文献+

制冷剂两相流音速对引射器喷嘴结构的影响

Effect of sonic velocity of two-phase refrigerant fluid on structure of ejector nozzle
下载PDF
导出
摘要 将液-液引射器内部的喷嘴作为研究对象,建立了喷嘴内气液两相流的非等熵膨胀模型和均相流音速模型.研究了制冷剂R134a和R22在不同喷嘴进出口压降条件下,喷嘴出口气液两相流音速的变化规律.模拟结果表明:随着喷嘴出口饱和温度的降低,喷嘴出口音速缓慢降低,而实际速度快速增大,喷嘴出口处R22的当地音速约为R134a当地音速的1.5倍;当喷嘴入口饱和温度为40℃时,R134a在喷嘴内实际膨胀过程的临界温度为14.5℃;对于高压液体作为工作流体的引射器,其喷嘴宜采用缩放型;当喷嘴入口饱和温度分别为40和50℃时,R22在喷嘴内实际膨胀过程的临界温度分别为-3.5和3.0℃,宜采用渐缩型喷嘴. The nozzle of a liquid-liquid ejector is selected as the research object, and a non-isentropic expanding model and a homogeneous sonic model of gas-liquid two-phase fluid in the nozzle are established. Then the change trend of sonic velocities of R134a and R22 under different inlet-outlet pressure drop of nozzle are investigated. Simulation results show that, with the decrease of saturation temperature of the nozzle outlet, the local sonic velocity of nozzle outlet decreases slowly. But the actual speed of nozzle outlet increases quickly, the sonic velocity of R22 in the nozzle outlet is about 1.5 times that of R134a. While the temperature of nozzle inlet maintains 40 ℃, the critical temperature of R134a in the actual expanding process is about 14. 5 ℃, and a convergent-divergent nozzle should be adopted for the ejector. When the inlet saturated temperature of nozzle are 40 and 50 ℃, the critical temperatures of R22 in the actual expansion process are - 3.5 and 3.0 ℃, respectively, and a tapered nozzle should be used for the ejector.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期91-96,共6页 Journal of Southeast University:Natural Science Edition
基金 "十二五"国家科技支撑计划子课题资助项目(2011BAJ03B05-03) 中国博士后基金资助项目(2012M520970) 江苏省自然科学基金资助项目(BK20140924)
关键词 引射器 音速 临界温度 缩放喷嘴 ejector sonic velocity critical temperature convergent-divergent nozzle
  • 相关文献

参考文献18

  • 1Chen X J, Omer S, Worall M. Recent developments in ejector refrigeration technologies [J]. Renewable and Sustainable Energy Reviews,2013,19:629-651.
  • 2Abdulateef J M, Sopian K, Alghoul M A, et al. Review on solar-driven ejector refrigeration technologies [J]. Renewable and Sustainable Energy Reviews,2009,13(6/7):1338-1349.
  • 3Dahmani A, Aidoun Z, Galanis N. Optimum design of ejector refrigeration systems with environmentally benign fluids [J]. International Journal of Thermal Sciences,2011,50(8):1562-1572.
  • 4Sumeru K, Nasution H, Ani F N. A review on two phase ejector as an expansion device in vapor compression refrigeration cycle [J]. Renewable and Sustainable Energy Reviews,2012,16(7):4927-4937.
  • 5Bilir N, Ersoy H K. Performance improvement of the vapor compression refrigeration cycle by a two-phase constant area ejector [J]. International Journal of Energy Research,2009,33(5):469-480.
  • 6Sarkar J. Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants [J]. International Journal of Energy Research,2010,34(1):84-94.
  • 7Dopazo J A, Seara J F. Experimental evaluation of an ejector as liquid re-circulator in an overfeed NH3 system with a plate evaporator [J]. International Journal of Refrigeration,2011,34(7):1676-1683.
  • 8Li Y L, Tan L Z, Zhang X S, et al. Experimental evaluation of an ejector as liquid re-circulator in a falling-film water chiller [J]. International Journal of Refrigeration,2014,40:309-316.
  • 9李应林,谭来仔,陈传宝,吴薇,张小松,杜垲.液液引射器性能的数值模拟与实验[J].东南大学学报(自然科学版),2014,44(2):289-294. 被引量:9
  • 10Yang L, Wang W. The heat transfer performance of horizontal tube bundles in large falling film evaporators [J]. International Journal of Refrigeration,2011,34(1):303-316.

二级参考文献12

  • 1He S, Li Y, Wang R Z. Progress of mathematical mod?eling on ejectors[J]. Renewable and Sustainable Ener?gy Reviews, 2009, 13( 8): 1760 -1780.
  • 2Chen XJ, Orner S, Worall M, et al. Recent develop?ments in ejector refrigeration technologies[J]. Renew?able and Sustainable Energy Reviews, 2013, 19: 629 - 651.
  • 3AbdulateefJ M, Sopian K, Alghoul M A, et al. Re?view on solar-driven ejector refrigeration technologies[J] . Renewable and Sustainable Energy Reviews, 2009, 13 (6/7) : 1338 - 1349.
  • 4Dahmani A, Aidoun Z, Galanis N. Optimum design of ejector refrigeration systems with environmentally benign fluids[J]. InternationalJournal of Thermal Sciences, 2011,50(8): 1562 -1572.
  • 5Zhu Y, Li Y. Novel ejector model for performance evaluation on both dry and wet vapors ejectors[J]. In?ternationalJournal of Refrigeration, 2009, 32 ( 1 ) : 21 -31.
  • 6Bergander MJ, Butrymowics D, Smierciew K, et al. Refrigeration cycle with ejector for second step compres?sion[CJ / / International Refrigeration and Air Condi- tioning Conference. West Lafayette, IN, USA, 2010: 2211-1-2211-8.
  • 7Chen X, Zhou Y, YuJ. A theoretical study of an inno?vative ejector enhanced vapor compression heat pump cycle for water heating application[J]. Energy and Buildings, 2011,43(12): 3331 -3336.
  • 8Sumeru K, Nasution H, Ani F N. A review on two phase ejector as an expansion device in vapor compres?sion refrigeration cycle[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4927 -4937.
  • 9Bilir N, Ersoy H K. Performance improvement of the vapor compression refrigeration cycle by a two-phase constant area ejector[J]. InternationalJournal of Ener?gy Research, 2009, 33 ( 5) : 469 - 480.
  • 10SarkarJ. Geometric parameter optimization of ejector?expansion refrigeration cycle with natural refrigerants[J]. InternationalJournal of Energy Research, 2010, 34(1): 84-94.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部