期刊文献+

偏高岭土对高性能水泥砂浆性能的影响 被引量:24

Effects of metakaolin on properties of high performance mortar
下载PDF
导出
摘要 研究了偏高岭土的火山灰活性,考察了不同偏高岭土掺量对高性能水泥砂浆的流动度、抗折强度、抗压强度和氯离子渗透性的影响.试验结果表明:偏高岭土的火山灰活性高于硅灰;偏高岭土颗粒形貌的不规则性会降低新拌砂浆的流动度;偏高岭土的掺入使砂浆的抗折强度降低,90d养护龄期时偏高岭土掺量为10%的砂浆抗折强度高于偏高岭土掺量为6%,14%的砂浆抗折强度.偏高岭土掺量为10%的砂浆的后期抗压强度最高,90 d养护龄期时可达96.3 MPa;56 d龄期时偏高岭土掺量为0%,6%,10%,14%的砂浆的氯离子渗透性都较低,电通量分别为165,221,191,158 C. The pozzolanic reactivity of metakaolin and the effects of different metakaolin contents on fluidity, flexural strength, compressive strength and chloride ion penetrability of high performance mortar are studied. The experimental results show that the pozzolanic reactivity of metakaolin is higher than that of silica fume. The irregular morphology of metakaolin decreases the fluidity of fresh mortars. The flexural strength of the mortars decreases due to the addition of metakaolin, and at the curing age of 90 d the flexural strength of the mortars with the metakaolin content of 10% is higher than those with the metakaolin contents of 6% and 14%. In addition, the compressive strength of the mortars with the metakaolin content of 10% is the highest, which reaches 96.3 MPa when the curing age is 90 d. The chloride ion penetrabilities of the mortars with the metakaolin contents of 0%, 6%, 10% and 14% are low when the curing age is 56 d, and the total charges are 165, 221, 191, 158 C, respectively.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期121-125,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51308110) 江苏省自然科学基金资助项目(BK2012754) 江苏省建筑科学研究院有限公司高性能土木工程材料国家重点试验室开放基金资助项目(2012CEM007)
关键词 偏高岭土 火山灰活性 力学性能 氯离子渗透性 metakaolin pozzolanic reactivity mechanical properties chloride ion penetrability
  • 相关文献

参考文献11

  • 1Rashad A M. Metakaolin as cementitious material: history, scours, production and composition: a comprehensive overview[J]. Construction and Building Materials,2013,41:303-318.
  • 2Fabbri B, Gualtieri S, Leonardi C. Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin[J]. Applied Clay Science,2013,73:2-10.
  • 3Bich C, Ambroise J, Péra J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin[J]. Applied Clay Science,2009,44(3):194-200.
  • 4Tironi A, Trezza M A, Irassar E F, et al. Thermal treatment of kaolin: effect on the pozzolanic activity [J].Procedia Materials Science,2012,1:343-350.
  • 5Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review[J]. Applied Clay Science,2009,43(3):392-400.
  • 6Courard L, Darimont A, Schouterden M, et al. Durability of mortars modified with metakaolin[J]. Cement and Concrete Research,2003,33(9):1473-1479.
  • 7Sabir B B, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review[J]. Cement and Concrete Composites,2001,23(6):441-454.
  • 8San Nicolas R, Cyr M, Escadeillas G. Performance-based approach to durability of concrete containing flash-calcined metakaolin as cement replacement[J]. Construction and Building Materials,2014,55:313-322.
  • 9Kim H S, Lee S H, Moon H Y. Strength properties and durability aspects of high strength concrete using Korean metakaolin[J]. Construction and Building Materials,2007,21(6):1229-1237.
  • 10Güneyisi E, Gesogglu M, Akoi A O M, et al. Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete[J]. Composites Part B: Engineering,2014,56:83-91.

同被引文献241

引证文献24

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部