期刊文献+

枯草芽孢杆菌核黄素操纵子与ribC基因的修饰与遗传效应 被引量:2

The genetic modification effect of rib operon and ribC gene in Bacillus subtilis
原文传递
导出
摘要 【目的】研究核黄素操纵子(rib)组成型高表达,以及rib C基因低水平表达对枯草芽孢杆菌过量合成核黄素的影响。【方法】在染色体原位修饰启动子,用m RNA稳定子替换m RNA前导区,使rib操纵子组成型高表达;修饰rib C基因的启动子,降低rib C基因的表达水平。采用q RT-PCR方法,表征基因的相对表达水平;通过摇瓶发酵,测定重组菌的生物量和核黄素产量,表征相关基因修饰所表现的遗传效应。【结果】用gsi B m RNA稳定子替换核黄素操纵子的m RNA前导区,使其相对表达水平提高了约1 500倍。rib C基因启动子-35区的首个碱基由"T"突变为"C",使rib C基因的表达水平下降了97%以上。得到的重组菌株LX34在补加蔗糖20 g/L的LB培养基上摇瓶发酵36 h,可积累核黄素2.1 g/L,同时生物量没有明显下降。【结论】使用gsi B m RNA稳定子,能够有效地提高目标基因或操纵子的表达水平;启动子-35区首个碱基的点突变,能够有效降低rib C基因的表达水平;rib操纵子过量表达和rib C基因低水平表达,使细胞能够过量合成并积累核黄素。 [Objective] This research focus on the influence of rib operon constitutively over-expression and ribC gene low levels expression on the synthesis and accumulation of riboflavin in Bacillus subtilis. [Methods] For the constitutively over-expression of rib operon, its promoter was modified in situ, and the mRNA leader region was replaced by mRNA stabilizer. Using point mutations of its promoter -35 region, ribC gene transcription level was reduced. The transcription levels of the target genes were analysed by qRT-PCR method. The genetic effects of the modified genes were assessed by measuring the biomass and riboflavin production of the recombinant in shaking flask fermentation. [Results] The relative transcription levels of gsiB stabilizer-modified rib operon have increased about 1 500 times. The first base mutations of ribC promoter -35 region can lead to its expression levels decreased by more than 97%. With the LB medium supplemented with sucrose 20 g/L, fermentation was completed in 36 h and the resulting recombinant strains LX34 can accumulate riboflavin 2.1 g/L, meanwhile no significant decline in the biomass. [Conclusion] The gsiB mRNA stabilizer can effectively improve transcription levels of the target gene or operon. A point mutation in the first base of promoter -35 region can effectively reduce the transcription of ribC gene. The over-expression of rib operon and the expression reduced significantly of ribC gene result in the accumulation of riboflavin.
出处 《微生物学通报》 CAS CSCD 北大核心 2015年第1期9-16,共8页 Microbiology China
基金 国家863计划项目(No.2012AA02A701)
关键词 枯草芽孢杆菌 核黄素 rib操纵子 ribC基因 mRNA稳定子 Bacillus subtilis, Riboflavin, rib operon, ribC gene, mRNA stabilizer
  • 相关文献

参考文献16

  • 1PerkinsJB, Sloma A, PeroJG, et al. Bacterial strains which overproduce riboflavin and methods of use thereof: United States Patent, US7091000B2[P]. 2003-12-18. http://www. google.com.hkipatentsIUS 7091000.
  • 2Charles AA, Andriy AS. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2): 321-360.
  • 3Vitreschak AG, Rodionov DA, Mironov AA. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation[J]. Nucleic Acids Research, 2002, 30(14): 3141-3151.
  • 4Mikhail SG, Andrey AM,JomantasJ, et al. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes[J]. Genome Analysis, 1999, 15(11): 439-442.
  • 5Vitreschak AG, Rodionov DA, Mironov AA. Riboswitches: the oldest mechanism for the regulation of gene expression[J]. Trends in Genetics, 2004, 20(1): 44-50.
  • 6Lehmann M, Pragai Z, Schaber M. Increased production of a target product via stabilization of mRNA: European Patent, US855 1 732B2[P). 2013-10-08 http://www.google.com/ patentslUS855 1732.
  • 7Lehmann M. Improved production of riboflavin: European Patent, EP2186880AI[P). 2010-5-19. http://www.google. com/patentslEP2186880AI cl=en.
  • 8urgena B, Schwedera T, Hecker M. The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site[J]. Molecular and General Genetics, 1998,258(5): 538-545.
  • 9Morinaga T, Kobayashi K, Ashida H, et al. Transcriptional regulation of the Bacillus subtilis asnH operon and role of the 5 '-proximal long sequence triplication in RNA stabilization[J]. Microbiology, 2010,156(6): 1632-1641.
  • 10Mack M, Adolphus VL, Hohmann HP. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the favokinaselflavin adenine dinucleotide synthetase encoded by ribC[J].Journal of Bacteriology, 1998, 180(40): 950-955.

二级参考文献13

  • 1SambrookJ RussellDW.分子克隆实验指南(第三版)[M].北京:科学出版社,2002.479-483.
  • 2Stulke J, Hillen W. Carbon catabolite repression in bacteria.Current Option in Microbiology, 1999, 2:195 - 201.
  • 3Blencke HM, Homuth G, Ludwig H, et al. Trauscriptional profiling of gene expression in response to glucose in Bacillus subtilis:regulation of the central metabolic pathways. Metabolic Engineering,2003,5:133- 149.
  • 4Matthew SM, Barbara IS, Randal RM, et al. Catabolite repression mediated by the CcpA protein in Bacillus subtilis : novel modes of regulation revealed by whole-genome analyses. Molecular Microbiology ,2001, 39(5) : 1366 - 1381.
  • 5Galinier A, Haiech J, Kilhoffer MC, The Bacillus subtilis crh gene encodes a HPr-like protein involved in catabolite repression. Proc Natl Acad Sci USA, 1997,94:8439 - 8444.
  • 6Kraus A, Hueck C, Gartner D. Catabolite repression of the Bacillus subtilis xyl operion involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol, 1994, 176:1738- 1745.
  • 7Bruckner R, Titgemeyer F. Carbon catabolite repression in bacteria:choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters, 2002, 209 : 141 - 148.
  • 8Grundy FJ, Waters DA, Allen SH. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol, 1993, 175(22):7348 - 7355.
  • 9Kim H, Roux A, Sonenshein AL. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbial,2002, 45:179- 190.
  • 10Kova'rova'-Kovar K, Gehlen S, Kunze A. et al. Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production. J Biotechnology, 2000, 79:39- 52.

共引文献8

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部