期刊文献+

两方量子密钥协商协议的改进 被引量:3

Improvement of a two-party quantum key agreement protocol
下载PDF
导出
摘要 针对Hsueh和Chen的基于最大纠缠态两方量子密钥协商协议存在安全漏洞,即发送方可单方控制共享密钥的问题,通过增加接收方的幺正操作给出了一个改进方案.利用幺正操作来代替对发送方的安全检测,这从根本上满足了量子密钥协商中各参与者都贡献于共享密钥的生成和分配这一基本要求,从而使其抗发送方攻击的安全性依赖于基本物理原理而非检测光子技术.安全分析表明,该方案可有效抵抗外部攻击和参与者攻击.与另一改进方案相比,该方案以更小的代价解决了原协议的漏洞,提高了协议效率. To avoid the weakness that the sender can fully control the shared key alone in the Hsueh and Chen's two-party quantum key agreement (QKA) protocol with maximally entangled states, a possible solution is presented by adding the receiver's unitary operation. The unitary operation instead of the security checking is utilized, which makes this protocol fundamentally meet the basic requirement that in a quantum key agreement each participant equally contribute to the generation and distribution of the shared key. Therefore the security against the participant attack is based on basic physical principles rather than on the checking photons technique. Security analysis shows that this protocol is secure against the outside attack and participant attack. Compared with the previous improved protocol, the weakness is avoided with less qubits and the efficiency of the protocol is improved.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第1期86-90,186,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61072140 61373171) 高等学校创新引智计划资助项目(B08038) 高等学校博士学科点专项科研基金资助项目(20100203110003)
关键词 量子通信 量子密钥协商 最大纠缠态 量子密码 quantum communication quantum key agreement maximally entangled states quantum cryptography
  • 相关文献

参考文献13

  • 1Namiki R, Hirono T. Efficient-phase-encoding Protocols for Continuous-variable Quantum Key Distribution Using Coherent States and Postselection [J]. Physical Review A, 2006, 74(3): 032302.
  • 2刘丹,裴昌幸,权东晓,韩宝彬,赵楠.一种可提高安全通信距离的诱骗态量子密钥分发方案[J].西安电子科技大学学报,2010,37(1):13-17. 被引量:7
  • 3刘晓慧,裴昌幸,聂敏.多用户量子密钥分配方案及协议设计[J].西安电子科技大学学报,2012,39(5):6-11. 被引量:1
  • 4Zhou N, Zeng G, Xiong J. Quantum Key Agreement Protocol [J]. Electronics Letters, 2004, 40(18): 1149-1150.
  • 5Tsai C W, Hwang T. On Quantum Key Agreement Protocol [R]. Tainan: National Cheng Kung University, 2009.
  • 6Chong S K, Hwang T. Quantum Key Agreement Protocol Based on BB84 [J]. Optics Communications, 2010, 283(6): 1192-1195.
  • 7Bennett C H, Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing [C]//Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing. Piscataway: IEEE, 1984: 175-179.
  • 8Shi R H, Zhong H. Multi-party Quantum Key Agreement with Bell States and Bell Measurements [J]. Quantum Information Processing, 2013, 12(2): 921-932.
  • 9Liu B, Gao F, Huang W, et. al. Multiparty Quantum Key Agreement with Single Particles [J]. Quantum Information Processing, 2013, 12(4): 1797-1805.
  • 10Hsueh C C, Chen C Y. Quantum Key Agreement Protocol with Maximally Entangled States [C]//Proceedings of the 14th Information Security Conference. Taipei: National Taiwan University of Science and Technology, 2004: 236-242.

二级参考文献16

  • 1朱畅华,裴昌幸,马怀新,于晓飞.一种量子局域网方案及其性能分析[J].西安电子科技大学学报,2006,33(6):839-843. 被引量:27
  • 2Bennett C H, Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing [C] //Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing. Bangalore: IEEE, 1984: 175-179.
  • 3Hwang W Y. Quantum Key Distribution with High Loss toward Global Secure Communication [J]. Phys Rev Lett, 2003, 91(5): 057901-1-057901-4.
  • 4Wang X B. Beating the Photon number splitting Attack in Practical Quantum Cryptography [J]. Phys Rev Lett, 2005, 94(23) : 230503-1-230503-4.
  • 5Wang X B. Quantum Key Distribution with 4 Intensities of Coherent Light [J]. Phys Rev A, 2005, 72(1) : 012322-1- 012322-6.
  • 6Lo H K, Ma X, Chen K. Decoy State Quantum Key Distribution [J]. Phys Rev Lett, 2005, 94(23) : 230504-1-230504-4.
  • 7Ma X, Qi B, zhao Y, et al. Practical Decoy State for Quantum Key Distribution[J]. Phys Rev A, 2005, 72(1) : 012326- 1-012326,15.
  • 8Zhao Y, Qi B, Ma X, et al. Experimental Quantum Key Distribution with Decoy States[J]. Phys Rev Lett, 2006, 96 (7) : 070502-1-070502-4.
  • 9Peng C Z, Zhang J, Yang D, et al. Experimental Long-distance Decoy-state Quantum Key Distribution Based on Polarization Encoding [J]. Phys Rev Lett, 2007, 98(1) : 010505-1-010505-4.
  • 10Rosenberg D, Harrington W J, Rice P R, et al. Long-distance Decoy-state Quantum Key Distribution in Optical Fiber [J].Phys Rev Lett, 2007, 98(1): 010503-1-010503-4.

共引文献6

同被引文献7

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部