期刊文献+

基于小波奇异熵和相关向量机的氢气传感器故障诊断 被引量:14

Fault diagnosis of hydrogen sensor based on wavelet singular entropy and relevance vector machine
下载PDF
导出
摘要 针对氢气传感器故障问题,提出了一种智能化的传感器故障诊断方法,可以对自身故障状态进行诊断和识别。提出了一种基于小波奇异熵(wavelet singular entropy,WSE)和相关向量机(relevance vector machine,RVM)原理的氢气传感器故障诊断方法,将小波变换和奇异熵两种分析思想相结合,提取信号的完备故障特征;利用小生境粒子群优化算法(niche particle swarm optimization,NPSO)对相关向量机的核参数进行优化,提高故障诊断的准确率。将提出的方法与其他成熟算法进行了比较,实验结果表明所提方法故障诊断识别率达到98%以上,解决了非线性、小样本条件下的传感器故障诊断问题,提高了传感器的可靠性。 Aiming at the fault problem of hydrogen sensor, an intelligent fault diagnosis method which can diagnose and distinguish the fault state of the sensor was proposed. The fault diagnosis method based on wavelet singular entropy and relevance vector machine was researched, the feature of fault signal was extracted completely by combining the theory of the wavelet transform and singular entropy. The niche particle swarm optimization algorithm was used to optimize kernel parameter of RVM, and the accuracy of the fault diagnosis was improved. The proposed method was compared with other mature algorithms. Results indicates that the fault diagnosis recognizable rate reaches 98%. It resolves the problem of sensor fault diagnosis under the condition of nonlinear and small sample, and promote the reliability of sensor.
出处 《电机与控制学报》 EI CSCD 北大核心 2015年第1期96-101,共6页 Electric Machines and Control
基金 国家自然科学基金(61201306)
关键词 小波奇异熵 相关向量机 氢气传感器 小生境粒子群优化 故障诊断 wavelet singular entropy relevance vector machine hydrogen sensor niche particle swarm optimization fault diagnosis
  • 相关文献

参考文献13

  • 1WINTER C. Hydrogen energy - abundant, efficient, clean : a de- bate over the energy system of change[ J]. International Journal of Hydrogen Energy, 2009, 34 : 1 - 52.
  • 2CLARK W W, RIFKIN J, OCONNOR T, et al. Hydrogen energy stations: along the roadside to the hydrogen economy[ J ]. Utilities Policy, 2005, 13(2) : 41 -50.
  • 3ELAOUD S, HADJ- TAIEB L, HADJ- TAIEB E. Leak detec- tion of hydrogen natural gas mixtures in pipes using the characteris- tics method of specified time intervals[ J ]. Journal of Loss Preven- tion in the Process Industries, 2010, 23 (3) : 637 - 645.
  • 4毕晓君,柳长源,卢迪.基于PSO-RVM算法的发动机故障诊断[J].哈尔滨工程大学学报,2014,35(2):245-249. 被引量:15
  • 5TIPPING Me. Sparse bayes learning and the relevance vector ma- chine[ J]. Machine Leaming Research, 2001 : 211 - 244.
  • 6李凌均,张周锁,何正嘉.基于支持向量数据描述的机械故障诊断研究[J].西安交通大学学报,2003,37(9):910-913. 被引量:55
  • 7SAMANTA B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms [ J ]. Mechan- ical System and Signal Processing, 2004, 18 (3) : 625 -644.
  • 8JACK L B, NANDIA K. Fault detection using support vector ma- chines and artificial neural networks, augmented by genetic algo- rithms[J]. Mechanical System Sand Signal Processing, 2002, 16 (2) : 373 -390.
  • 9沙立成,宋珺.基于改进粒子群优化LS-SVM的变压器故障气体预测[J].华北电力大学学报(自然科学版),2011,38(1):35-38. 被引量:10
  • 10沈默,廖瑛,尹大伟.RVM在航空发动机故障诊断中的应用研究[J].计算机工程与应用,2012,48(25):220-223. 被引量:7

二级参考文献48

共引文献125

同被引文献151

引证文献14

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部