期刊文献+

二甲醚燃烧机理的简化及其均质压燃燃烧验证 被引量:4

Simplification of DME Combustion Mechanism and Validation with HCCI Combustion
下载PDF
导出
摘要 基于积分计算奇异摄动法简化了二甲醚骨架机理,构建了包含24种物质和20个反应的二甲醚简化机理,并采用发动机单区模型进行验证.结果表明:所提出的二甲醚简化机理具有Curran等提出的详细机理的低温反应、负温度系数区、甲酸生成与消耗过程、高温反应等特征,而且与Curran等提出的详细机理的计算结果较吻合,表明其适用于二甲醚均质压燃过程的模拟计算;利用重要性因子进一步"修剪"后的二甲醚简化机理的适用性较差,表明原二甲醚简化机理的简洁度较高. Based on the integration computational singular perturbation (ICSP), a reduced mechanism consisting of 24 species and 20 reactions was simplified from the skeletal mechanism. The reduced mechanism was validated using closed internal combustion engine simulator, and it was found that the reduced mechanism reproduced the important characteristics of dimethyl ether (DME) detailed chemical kinetic model, such as low temperature reaction, negative temperature coeffcient (NTC), the production and consumption of HCOOH and high temperature reaction. The results calculated from the reduced mechanism agree with that from the detailed one, which means that the reduced mechanism is suitable for the numerical simulation of homogeneous charge compression ignition (HCCI) fueled with DME. Besides, the poor applicability of reduced mechanism after trimmed by important index iuustrates the high simplicity of original reduced mechanism.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第1期129-134,140,共7页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)项目(2012AA111721) 浙江省科技计划项目(2014C31033)资助
关键词 二甲醚 积分计算奇异摄动 机理简化 均质压燃 dimethyl ether (DME) integration computational singular perturbation (ICSP) mechanism simplification homogeneous charge compression ignition (HCCI)
  • 相关文献

参考文献15

  • 1Lu T,Law C K. A criterion based on computationalsingular perturbation for the identification of quasisteady state species : A reduced mechanism for meth-ane oxidation with NO chemistry [J]. Combustionand Flame,2008,154(4): 761-774.
  • 2Bradley D,Morley C. Comprehensive chemical kinet-ics[M/OL]. Holland : Elsevier, 1997 : 293-437[2014-04-01 ]. http: // www. sciencedirect. com/sci-ence/article/ pii/S0069804097800192.
  • 3Vajada S,Vaiko P,Turanyi T. Principal componentanalysis of kinetic models [J]. Int J Chemical Kinet-ics, 1985, 17(1): 55-81.
  • 4Lu T F,Law C K. A directed relation graph methodfor mechanism reduction [J]. Proceedings of the Com-bustion Institute, 2005 , 30(1) : 1333-1341.
  • 5Lam S H , Goussis D A. The CSP method for simpli-fying kinetics [J]. Int J Chemical Kinetics,1994,26(4); 461-486.
  • 6吴作柱.内燃机燃料燃烧详细化学动力学机理简化研究[D].上海:上海交通大学机械与动力工程学院,2014.
  • 7Ren Z, Pope S B. The use of slow manifolds in reac-tive flows [J]. Combustion and Flame,2006, 147(4): 243-261.
  • 8Curran H J ? Fischer S L, Dryer F L. The reactionkinetics of dimethyl ether. II. Low-temperature oxi-dation in flow reactors [J]. International Journal ofChemical Kinetics, 2000, 32(12) : 741-759.
  • 9Fischer S L? Dryer F L, Curran H J. The reactionkinetics of dimethyl ether. I. High-temperaturepyrolysis and oxidation in flow reactors [J]. Interna-tional Journal of Chemical Kinetics, 2000,32(12):713-740.
  • 10Kim H,Cho S,Min K. Reduced chemical kineticmodel of DME for HCCI combustion [_ EB/ OL ].(2003-05-19) [2014-04-10], http: // papers, sae. org/2003-01-1822/.

二级参考文献35

共引文献15

同被引文献29

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部