期刊文献+

基于特征表征的单幅图像超分辨方法(英文) 被引量:7

Single Image Super-Resolution Based on the Feature Sign Method
下载PDF
导出
摘要 基于稀疏表示的图像超分辨是近年信号处理中的研究热点,快速准确地找到图像的稀疏表示系数是该方法的关键。该文提出了一种基于特征表征的算法来求解图像块的稀疏表示系数。受压缩感知理论启发,使用联合训练的字典来进行图像超分辨。特征表征算法在每一次迭代中,通过确定稀疏系数的符号,将求解的非凸问题变为凸问题,有效提高所得稀疏系数的准确性和超分辨算法速度。仿真结果显示,与插值法和经典的稀疏表示法比较,特征表征法可以得到更好的主观视觉评价和客观量化评价。 Recently, the super-resolution methods based on sparse representation has became a research hotpot in signal processing. How to calculate the sparse coefficients fast and accurately is the key of sparse representation algorithm. In this paper, we propose a feature sign method to compute the sparse coefficients in the search step. Inspired by the compressed sensing theory, two dictionaries are jointly learnt to conduct super-resolution in this method. The feature sign algorithm changes the non-convex problem to a convex one by guessing the sign of the sparse coefficient at each iteration. It improves the accuracy of the obtained sparse coefficients and speeds the algorithm. Simulation results show that the proposed scheme outperforms the interpolation methods and classic sparse representation algorithms in both subjective inspects and quantitative evaluations.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第1期22-27,共6页 Journal of University of Electronic Science and Technology of China
基金 Supported by the National Natural Science Foundation of China(61075013) China Postdoctoral Science Foundation(20100471671)~~
关键词 特征表征方法 图像重建 图像分辨率 稀疏表示 feature sign method image reconstruction image resolution sparse representation
  • 相关文献

参考文献11

  • 1FREEMAN W T, PASZTOR E C, CARMICHAEL 0 T. Learning low-level vision[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Los Alamitos, CA, USA: IEEE Comput Soc. 1999.
  • 2CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Comput Soc 2004: 275-282.
  • 3CANDES, EMMANUEL J. Compressive sampling[C]1125th International Congress of Mathematicians, ICM 2006. United States: Asociacion International Congress of Mathematicians, 2006: 1433-1452.
  • 4YANG J, WRIGHT J, HUANG T S, et al. Image super?resolution via sparse representation[J]. IEEE Transactions on Image Processing. 2010, 19(11): 2861-2873.
  • 5DAVIS G, MALLAT S, AVELLANEDAM. Adaptive greedy approximation[J]. Constructive Approximation, 1997,13(1): 57-98.
  • 6EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[J]. Annals of Statistics, 2004, 32(2): 407-499.
  • 7KOH K, KIM S J, BOYD S. An interior-point method for large scale £1 -regularized logistic regression[J]. Journal of Machine learning research, 2007,1(4): 1519-1555.
  • 8DONOHO D L. For most large underdetermined systems of linear equations, the minimal £ 1 -norm solution is also the sparsest solution[J]. Communication on Pure and Applied Mathematics, 2006: 59(7), 907-934.
  • 9ZENG L, LI X F, XU J. An improved joint dictionary training method for single image super resolution[J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32(2): 721-727.
  • 10AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing over-complete dictionaries for sparse representation[J]. IEEE Transactions on Image Processing. 2006, 54(11): 4311-4322.

同被引文献51

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部