期刊文献+

基于滑动窗口的RFID自适应数据清洗算法 被引量:4

Adaptive RFID Data Cleaning Algorithm Based on Sliding-window
下载PDF
导出
摘要 RFID(射频识别)标签阅读器对操作环境的敏感性很高,导致其产生的RFID数据流不可靠,并含有大量的漏读,因此必须要对原始数据进行清洗。设计基于滑动窗口的自适应数据清洗算法,算法使用滑动窗口技术和二项分布模型计算合适的窗口大小,通过窗口子区间的监测结果和标签的状态来动态调整窗口大小。结果显示,在移动环境下本算法比SMURF算法产生的平均错误数少,性能更加优越,准确率和稳定性都有明显提高。 RFID ( radio frequency identification devices ) tag reader is very sensitive to the operating environment , which causes the produced RFID data flow unreliable , containing a large amount of missing words in reading , therefore, it’ s necessary to cleanse the original data .An adaptive data cleansing algorithm based on sliding window is designed , which employs the sliding window technology and binomial distribution model to calculate the appropriate size of windows and dynamically adjusts the size of the window through the monitoring results of the subinterval windows and the states of the tags .Results show that this algorithm produces fewer errors on average than SMURF algorithm , that its performances are more superior and that its accuracy and stabili-ty are obviously improved .
作者 封慧英 周良
出处 《计算机与现代化》 2015年第1期31-36,共6页 Computer and Modernization
基金 江苏省产学研联合创新资金资助项目(SBY201320423)
关键词 RFID 滑动窗口 二项分布模型 数据清洗 RFID sliding-window binomial model data cleaning
  • 相关文献

参考文献4

二级参考文献65

  • 1谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 2Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data streams. In: Popa L, ed. Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems. Madison: ACM Press, 2002. 1~16.
  • 3Terry D, Goldberg D, Nichols D, Oki B. Continuous queries over append-only databases. SIGMOD Record, 1992,21(2):321-330.
  • 4Avnur R, Hellerstein J. Eddies: Continuously adaptive query processing. In: Chen W, Naughton JF, Bernstein PA, eds. Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 261~272.
  • 5Hellerstein J, Franklin M, Chandrasekaran S, Deshpande A, Hildrum K, Madden S, Raman V, Shah MA. Adaptive query processing: Technology in evolution. IEEE Data Engineering Bulletin, 2000,23(2):7-18.
  • 6Carney D, Cetinternel U, Cherniack M, Convey C, Lee S, Seidman G, Stonebraker M, Tatbul N, Zdonik S. Monitoring streams?A new class of DBMS applications. Technical Report, CS-02-01, Providence: Department of Computer Science, Brown University, 2002.
  • 7Guha S, Mishra N, Motwani R, O'Callaghan L. Clustering data streams. In: Blum A, ed. The 41st Annual Symp. on Foundations of Computer Science, FOCS 2000. Redondo Beach: IEEE Computer Society, 2000. 359-366.
  • 8Domingos P, Hulten G. Mining high-speed data streams. In: Ramakrishnan R, Stolfo S, Pregibon D, eds. Proc. of the 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Boston: ACM Press, 2000. 71-80.
  • 9Domingos P, Hulten G, Spencer L. Mining time-changing data streams. In: Provost F, Srikant R, eds. Proc. of the 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM Press, 2001. 97~106.
  • 10Zhou A, Cai Z, Wei L, Qian W. M-Kernel merging: Towards density estimation over data streams. In: Cha SK, Yoshikawa M, eds. The 8th Int'l Conf. on Database Systems for Advanced Applications (DASFAA 2003). Kyoto: IEEE Computer Society, 2003. 285~292.

共引文献181

同被引文献37

引证文献4

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部