摘要
以Hilbert不等式为代表的双线型不等式是分析学的重要不等式.近代,由于改进了权系数方法及引入独立参量,使该类不等式的推广应用研究得到深入发展.通过引入参数及估算权系数,给出一个新的具有最佳常数因子的半离散零齐次核为arctan(x/n)~λ(λ〉0)的Hilbert型不等式,同时给出了相应的等价形式.
The bilinear inequalities including Hilbert' s inequality are important in analysis and its applications. In recent years, by improving the way of weight coefficient and introducing the independent parameters, some research on the extensions and applications of this type of inequalities are developed. In this paper, by introducing some parameters and estimating the weight function, a new half-discrete Hilbert-type inequality with the Homogeneous Kernel of Degree 0 as arctan(x/n)λ(λ/0) and a best constant factor is given. The equivalent forms are considered.
出处
《渭南师范学院学报》
2015年第2期13-17,共5页
Journal of Weinan Normal University
基金
广东省自然科学基金项目:泛涵微分方程解的振动密度研究(S2013010013385)
湛江师范学院自然科学研究资助项目:Hilbert型积分算子及相关不等式的研究(L1212)