期刊文献+

基于蒙特卡罗方法的几何因子计算程序 被引量:3

Geometric factor calculation program based on Monte Carlo method
下载PDF
导出
摘要 应用蒙特卡罗方法求解几何因子,基于蒙特卡罗方法的几何因子计算程序使用C++语言编写,可用于任意位姿的各种尺寸的圆面探测器对圆面源几何因子的计算。该程序使用了方差减小技巧。通过与国际通用蒙特卡罗计算程序(MCNP5)的计算结果对比,该方法具有结果准确(误差较小)、计算速度快、使用方便等优点。最终使用该程序计算几何因子,与实验数据进行对比,成功验证了中子深度分布分析(NDP)能谱测量系统探测器位姿的准确性(误差5%以内),并对其移动位置进行修正,发现电机移动20mm大约会产生1mm的误差。 Geometric factor calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources.The Monte Carlo method can always calculate the geometric factors when there is no analytical algorithm available for geometric factor calculations.Few papers have reported the calculations of geometric factors when source and detector are both disc,but are un-coaxial and un-parallel.The program in this study is based on the Monte Carlo method and is written in the C++ programming language,and it can be used to calculate the geometric factor of a disc detector for a disc source.The detector and the source can be any size at any cases.This program integrated a variance reduction method,by comparing.The results with that calculated using MCNP5.It can be concluded that the program calculates geometric factors accurately,fast and conveniently.The geometric factor calculation program verified the accuracy of the pose of the detector which was applied in the NDP energy spectrum measurement system;furthermore,it corrected the detector position roughly.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第1期141-146,共6页 High Power Laser and Particle Beams
基金 中国工程物理研究院重点实验室基金项目(2013BB04)
关键词 几何因子 蒙特卡罗方法 方差减小技巧 中子深度分析 geometric factor Monte Carlo method variance reduction method neutron depth profiling
  • 相关文献

参考文献25

  • 1何希,雷震,巨凌军,杨晓燕,金玉仁,申茂泉.α谱仪探测器和面源不同轴情况下几何因子的计算[J].原子能科学技术,2010,44(B09):58-62. 被引量:2
  • 2刘宗良.圆面探测器对圆面源(非同轴)的几何因子的蒙特卡罗计算[D].长沙:南华大学,2009.
  • 3Dirican A, Erden P E, Seferinoglu M, et al. The use of solid angle for alpha detector efficiency in 226Ra analyses of soil samples[J]. Applied Radiation and Isotopes, 2012, 70(9) : 1-3.
  • 4Pomme S. A complete series expansion of Ruby's solid-angle formula[J]. Nuclear Instruments and Methods in Physics Research A, 2004, 531(3) : 616-620.
  • 5Potato6 S, Paepen J. A series expansion of Conway's generalized formulas[J]. Nuclear Instruments and Methods in Physics Research A, 2007, 579(1): 272-274.
  • 6Prata M J. Solid angle subtended by a cylindrical detector at a point source in terms of elliptic integrals[J].Radiation Physics and Chemis- try, 2003, 67(5) : 599-603.
  • 7Galiano E, Rodrigues M. A comparison of different analytical methods of determining the solid angle of a circular coaxial source-detector sys tem[J]. Applied Radiation and Isotopes, 2006, 64(4) : 497-501.
  • 8Pomm6 S. The solid angle subtended by a circular detector for a linear source[J]. Applied Radiation and Isotopes, 2007, 65(6) : 724-727.
  • 9牛胜利,彭玉,王建国,乔登江.X光导管传输特性的蒙特卡罗模拟[J].强激光与粒子束,2004,16(12):1513-1517. 被引量:6
  • 10卢玉朝,谢奇林,宋凌莉,刘汉刚.Rossi-α测量方法的蒙特卡罗直接模拟[J].原子能科学技术,2012,46(B09):370-373. 被引量:1

二级参考文献67

共引文献51

同被引文献31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部