期刊文献+

基于K-means聚类的遥感影像条状地物半自动提取方法 被引量:5

A Strips Features Semi-automatic Extraction Method of Remote Sensing Image Based on K-Means Clustering
下载PDF
导出
摘要 遥感图像地物目标提取是遥感图像分析的关键步骤,通过分析遥感图像的频谱特性,提出一种基于K-means聚类的地物目标提取方法。首先通过时域和频域相结合的方法对原始图像进行增强,再利用K-means聚类算法对图像各个分量进行聚类,聚类结果分为目标类和背景类,然后分别计算每一类的特征值均值和方差,迭代两类像素的灰度值,同时结合数学形态学和阈值方法进行地物目标提取,得到最终的目标提取结果。实验对多幅遥感图像进行不同地物目标的提取,实验结果表明:该算法具有很好的抗噪能力,目标提取结果精确,有一定的现实意义。 Through analyzing the characteristics of remote sensing image, this paper proposed a segmentation method based on K-means. Firstly we did image enhancement with time domain and frequency domain combination. Then, clustering segmentation algorithm was employed to all components for poly class, which was divided into target class and background class. After that, each characteristic value of the mean and variance value was calculated to do iteration on any two class pixel. Finally, image segmentation was finished and results were achieved using mathematics morphology and threshold value. We tried to do extraction on multiple images with different target. The results showed that the algorithm has good resistance to noise with fast operation, and it also has certain significance.
出处 《北京联合大学学报》 CAS 2015年第1期47-52,共6页 Journal of Beijing Union University
基金 国家自然科学基金项目(61370138 61372148) 2014年"启明星"大学生科技创新项目(201411417SJ053) 2014年研究生科技创新项目
关键词 K-MEANS 图像增强 目标提取 迭代 阈值 K-means Image enhancement Extraction Iteration Threshold
  • 相关文献

参考文献8

  • 1王晋年,顾行发,明涛,周翔.遥感卫星数据产品分类分级规则研究[J].遥感学报,2013,17(3):566-577. 被引量:26
  • 2谭玉敏,槐建柱,唐中实.一种边界引导的多尺度高分辨率遥感图像分割方法[J].红外与毫米波学报,2010,29(4):312-315. 被引量:19
  • 3Yi Lina, Zhang Guifeng, Wu Zhaocong. Geoscienee and remote sensing[ J ]. IEEE Transactions on Digital Ohject Identifier, 2012,10 (2) :4062 -4070.
  • 4Chaudhurl D, Kushwaha N K, Samal A, et al. Semi-automated road detection from high resolution satellite images by directional morphological enhancement and segmentation techniques [ J ]. IEEE journal of selected topics in applied earth observations and remote sensing, 2012,5 ( 5 ) : 1538 - 1544.
  • 5Rajeswari M ,Gurumurthy K S. Automatic road extraction using high resolution satellite images based on Level Set Mean Shift methods [ C]. Electronics Computer Technology(ICECT) , 2011:424 - 428.
  • 6Huertas A, Nevatia R. Detecting buildings in aerial images[ J]. Computer Vision, Graphics and Image Processing, 1985, 41(2): 131-152.
  • 7Zhang C S, Murai S J, Bahsavisas E P. Road network detection by mathematical morphology[ C]//Proc of ISPRS Workshop "3 D Geospatial Data Production : Meeting Application Requirements". Paris, France: 185 - 200.
  • 8庞晓敏,闵子建,阚江明.基于HSI和LAB颜色空间的彩色图像分割[J].广西大学学报(自然科学版),2011,36(6):976-980. 被引量:77

二级参考文献29

  • 1孙业明,关山,牛海波.基于小波变换的针叶苗木彩色图像分割[J].东北电力学院学报,2005,25(6):9-13. 被引量:2
  • 2肖鹏峰,冯学智,赵书河,佘江峰.基于相位一致的高分辨率遥感图像分割方法[J].测绘学报,2007,36(2):146-151. 被引量:55
  • 3Wuest B,Zhang Y.Region based segmentation of QuickBird multispectral imagery through band ratios and fuzzy comparison[J].ISPRS Journal of Photogrammetry and Remote Sensing.2009,(64):55-64.
  • 4陈忠.高分辨率遥感图像分类技术研究,2006.
  • 5Mealy B J.Fast region merge processing for watershed transforms[R].UCSC-CRL-02-39.2002.12.
  • 6Haris K,Efstratiadis S N,Katsaggelos A K.Hybrid image segmentation using watersheds and fast region merging[J].IEEE Transactions on Image Processing,1998,7(12):1684-1699.
  • 7Robinson D J,Redding N J,Crisp D J.Implementation of a fast algorithm for segmenting SAR imagery[R].2002.1.www.dsto.defence.gov.au/corportate/reports/DSTO_TR_1242.pdf.
  • 8ENVI feature extraction module user's guide[M].Feature Extraction Module Version 4.6 December,2008 Edition.
  • 9Mueller M,Segl K,Kaufmann H.Edge-and region-based segmentation technique for the extraction of large,man-made objects in high-resolution satellite imagery[J].Pattern Recognition,2004,37(8):1619-1628.
  • 10Zhou Y,Starkey J,Mansinha L.Segmentation of petrographic images by integrating edge detection and region growing[J].Computers & Geosciences,2004,30(8):817-831.

共引文献119

同被引文献49

  • 1谭衢霖,高姣姣.面向对象分类提取高分辨率多光谱影像建筑物[J].测绘工程,2010,19(4):30-33. 被引量:17
  • 2邓巍,丁为民,张浩.MATLAB在图像处理和分析中的应用[J].农机化研究,2006,28(6):194-198. 被引量:26
  • 3SONKA M,HLAVAC V,BOYLE R.图像处理、分析与机器视觉[M].3版.艾海舟,苏延超,等,译.北京:清华大学出版社,2011.
  • 4胡晓军,徐飞. Matlab应用图像处理[M].西安:西安电子科技大学出版社,2011.
  • 5Gonzalez R.C.,Woods R.E.,Eddins S.L..数字图像处理(MATLAB版)[M].阮秋琦,等,译.北京:电子工业出版社,2009.
  • 6R. Demir, I. Masaki, E. F. Crawley, at. System Design for Intelligent Railway Systems [C]. The 1997 IEEE Conference on Intelligent Transportation Systems, Boston, MA, USA, 1997, 218-- 223.
  • 7J. Veltan, A. Kummert, D. Maiwald. Image processing algorithm for video based real-time rail road track inspection[C]. 1999 IEEE 42nd Midwest Symposium on Circuits and Systems, Las Cruees, NM, USA, 1999, 530--533.
  • 8Kim, T. E. Cohn. Pseudo-Realtime Activity Detection for Railroad Grade crossing Safety[C]. The 2003 IEEE International Conference on Intelligent Transportation Systems, Shanghai, China, 2003,1355--1561.
  • 9S. Moekel, F. Seherer, P. F. Sehuster. Multi--sensor obstacle detection on railway tracks[C]. IEEE Intelligent Transportation Symposi- um, Columbus, Ohio, USA, 2003,42--46.
  • 10P. Nangtin, P. Kumhom, K. Chomnongthai. Video-based obstacle tracking for automatic train navigation[C]. 2005 International Symposi- um on Intelligent Signal Processing and Communication Systems, Hong Kong, 2005, 21--24.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部