期刊文献+

一种改进的社区探测方法 被引量:1

An improved community detection method
下载PDF
导出
摘要 社区探测是图和网络领域非常关键的技术之一,其中聚类方法扮演了重要的角色。针对层次聚类算法较高的时间复杂度,在信息理论框架下提出一种改进的社区探测方法 p IBD。p IBD把单部网络变换成二部图网络,预测k值,并基于信息瓶颈理论进行划分式聚类。实验结果表明,p IBD方法可以获得较已有层次聚类方法更高的准确率。 Community detection is one of crucial techniques in graph and network research, where clustering plays an important role. Taking into account high time complexity of hierarchical clustering, an improved com- munity detection method, called pIBD, is proposed under information-theoretic framework. The pIBD trans- forms a unipartite network into a bipartite network, predicts the value of k, and implements partitional cluste- ring based on information bottleneck theory. Experimental results show that pIBD could achieve higher accura- cy than existing hierarchical clustering methods.
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2015年第1期91-95,共5页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(61202286) 教育部科技发展中心网络时代的科技论文快速共享专项研究资助课题(2013117) 河南理工大学青年骨干教师项目 河南理工大学博士基金资助项目(B2011-039)
关键词 社区探测 聚类 K-MEANS F-MEASURE community detection clustering K-Means F-Measure
  • 相关文献

参考文献17

  • 1刘永利,吕克林,刘静.基于co-ICIB联合聚类的舆情监测系统设计[J].河南理工大学学报(自然科学版),2013,32(5):592-595. 被引量:1
  • 2LIU Yongli,OUYANG Yuanxin,ZHANG Xiong.Incremental Clustering using Information Bottleneck Theory[J].International Journal of Pattern Recognition and Artificial Intelligence,2011,25(5):695-712.
  • 3ROHINI U,VASUDEVA Varma.A Novel Approach for Re-Ranking of Search Results Using Collaborative Filtering[C]//International Conference on Computing:Theory and Applications,2007:491-496.
  • 4DELEL Rhouma,LOTFI Benromdhane.An efficient algorithm for community mining with overlap in social networks[J].Expert Systems with Applications,2014,41(9):4309-4321.
  • 5WU Zhenyu,ZOU Ming.An incremental community detection method for social tagging systems using locality-sensitive hashing,Neural Networks,2014,58:14-28.
  • 6SHI Chuan,CAI Yanan,FU Di,et al.A link clustering based overlapping community detection algorithm[J].Data&Knowledge Engineering,2013,87:394-404.
  • 7QI Xingqin,TANG Wenliang,WU Yezhou,et al.Optimal local community detection in social networks based on density drop of subgraphs[J].Pattern Recognition Letters,2014,36:46-53.
  • 8MARIC V.Nascimento.Community detection in networks via a spectral heuristic based on the clustering coefficient[J].Discrete Applied Mathematics,2013.
  • 9ZHAO Peixin,ZHANG Cunquan.A new clustering method and its application in social networks[J].Pattern Recognition Letters,2011,32:2109-2118.
  • 10TISHBY N,PEREIRA F C,BIALEK W.The information bottleneck method[C]//37th Ann.Allerton Conf.Communication,Control,and Computing,1999:368-377.

二级参考文献26

  • 1Albert R, Barabasi A-L. Statistical mechanics of complex networks. Reviews of Modern Physics, 2002, 74(1): 47-97
  • 2Newman M E J. The structure and function of complex networks. SIAM Review, 2003, 45(2): 167-256
  • 3Newman M E J. Detecting community structure in networks. European Physical Journal B, 2004, 38(2): 321-330
  • 4Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. Journal of Statistical Mechanics, 2005, P09008
  • 5Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 1970, 49 (2): 291-307
  • 6Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community, structure of complex networks in nature and society. Nature, 2005, 435(7043): 814-818
  • 7Newman M E J, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004, 69 (2): 026113
  • 8Fortunato S, Latora V, Marchiori M. A method to find community structures based on information centrality. Physical Review E, 2004, 70(5): 056104
  • 9Pons P, Latapy M. Computing communities in large networks using random walks//Proceedings of the 20th International Symposium on Computer and Information Sciences. Lecture Notes in Computer Science 3733. Springer, New York, 2005:284-293
  • 10Newman M E J. Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 2006, 74(3) : 036104

共引文献26

同被引文献10

  • 1OH C, HONDA K, ICHIHASHI H, et al. Fuzzy cluste- ring for categorical multivariate data [ C ]//Ifsa World Congress & Nafips International Conference. IEEE, 2001:2154 - 2159.
  • 2OH C H, HONDA K. Dual Exclusive Partition in Fuzzy CoDoK and SCAD-based Fuzzy Co-clustering [ J]. Pro- cedia Computer Science ,2013:800-809.
  • 3MATSUMOTO Y, HONDA K, NOTSU A, et al. FCM- type co-clustering of categorical multivariate data with exclusive partition[ C [// Soft Computing and Intelli- gent Systems (SCIS) and 13th International Symposi- um on Advanced Intelligent Systems (ISIS), 2012 Joint 6th International Conference on. IEEE, 2012: 1796 -1800.
  • 4TJHI W C,CHEN L. Dual Fuzzy-Possibilistic Co-cluste- ring for Document Categorization [ J ]. Data Mining Workshops icdm Workshops seventh IEEE Internation- al Conference on,2007:259-264.
  • 5MURANISHI M, HONDA K, NOTSU A, et al. A cluster validity index for FCM-type co-clustering[ C ]/Hydera- bad, India: Institute of Electrical and Electronics En- gineers Inc. , 2013.
  • 6TJHI W,CHEN L. A heuristic-based fuzzy co-clustering algorithm for categorization of high-dimensional data [Jl. Fuzzy Sets & Systems,2008,159(4) :371-389.
  • 7WU K L. Analysis of parameter selections for fuzzy c- means [ J ]. Pattern Recognition, 2012,45 ( 1 ) : 407- 415.
  • 8YAN Y, CHEN L,TJHI W C. Fuzzy semi-supervised co-clustering for text documents [ J ]. Fuzzy Sets & Sys- tems ,2013,215 ( 3 ) :74-89.
  • 9石海霞,叶水生.FCM聚类算法中模糊加权指数m的优化[J].计算机应用与软件,2009,26(5):62-64. 被引量:6
  • 10黄少滨,杨欣欣,申林山,李艳梅.高阶异构数据模糊联合聚类算法[J].通信学报,2014,35(6):15-24. 被引量:8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部