期刊文献+

基于格兰杰因果性的行走状态下脑肌电同步分析 被引量:4

Corticomuscular Synchronization Analysis Based on Granger Causality during Walking
下载PDF
导出
摘要 为了研究健康人在行走过程中大脑皮层与肌肉间的功能性关联,探究正走与倒走过程中该功能联系是否存在差异,分别对10名健康被试进行时长大于10 min的正走和倒走测试;基于格兰杰因果性算法(GC)对测试过程中同步采集到的头皮脑电(EEG)与表面肌电(EMG)信号进行分析,进一步定义不同节律下EEG和不同肌肉EMG的GC显著性面积指标,用以定量描述皮层-肌肉间的功能性耦合关系和信息流向,并分析脑电功率谱与该功能性耦合关系的联系。Wilcoxon非参数检验的结果显示,倒走过程中股直肌与胫骨前肌在EEG→EMG和EMG→EEG方向上alpha和beta节律的GC显著性面积指标较正走过程存在显著下降(P<0.05);线性回归分析的结果显示,正走和倒走中的EEG功率谱峰值与EEG→EMG方向的GC峰值存在线性相关性(P<0.05)。实验说明,健康人步行时EEG和EMG间存在方向性耦合关系,并且脑电alpha和beta节律参与步行中的控制反馈过程,从而证明该研究方法可以刻画大脑皮层与肌肉之间的同步特征与功能联系。 The aim of this study is to investigate functional relationship between brain cortex and muscles during walking and explore the differences of the functional relationships between forward and backward walking. This article collects the EEG and EMG datasets which acquired simultaneously from 10 healthy subjects during forward and backward walking. Granger causality (GC) method, which can reveal the coupling connection and information flow direction among two signals, was applied to analyze the EEG and surface EMG data. Further, the EEG-EMG significant GC area was defined to quantitatively describe the corticomuscular function coupling and information flow direction of different muscles at different frequencies. Then the EEG spectral power was calculated to analyze the relationship with corticomuscular function coupling. The results of Wilcoxon test show that during backward walking, the EEG→EMG and EMG→EEG significant GC area indexes of rectus femoris and tibialis anterior muscle were lower compared with forward walking (α = 0. 05, P 〈 0.05 ) , and a linear relationship exists between EEG spectral power peak and GC peak at EEG→EMG based on linear regression analysis(α= 0. 05, P 〈 0.05 ). These illustrate that there exists directed coupling between EEG and EMG during walking, and alpha and beta rhythm involve the control and feedback process of walking. It verifies thatthe proposed methods can further describe the synchronization feature and functional connection between cortex and muscles.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2014年第6期696-706,共11页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61271142) 河北省自然科学基金(青年)(F2014203246)
关键词 皮层-肌肉 格兰杰因果性 GC显著性面积 功能性耦合 行走 corticomuscular Granger causality ( GC ) significant GC area function coupling walking
  • 相关文献

参考文献26

  • 1GazzanigaMS,IvryRB,MangunGR,著.周晓林,高定国,等译.认知神经科学:关于心智的生物学[M].北京:中国轻工业出版社,2013:223-269.
  • 2Wieser M, Haefeli J, BUtler L, et al. Temporal and spatial patterns of cortical activation during assisted lower limb movement [J]. Exp Brain Res, 2010, 203(1): 181 -191.
  • 3La Fougere C, Zwergal A, Rominger A, et al. Real versus imagined looomotion: A [18 F] -FDG PET-fMRI comparison [J]. Neuroimage, 2010, 50(4): 1589-1598.
  • 4Clark DJ, Kautz SA, Bauer AR, et al. Synchronous EMG activity in the piper frequency band reveals the corticospinal demand of walking tasks [ J ]. Ann Biomed Eng, 2013, 41 (8) : 1778 - 1786.
  • 5Petersen TH, Willerslev-Olsen M, Conway BA, et al. The motor cortex drives the muscles during walking in human subjects [ J ]. J Physiol, 2012, S90( 10): 2443-2452.
  • 6欧阳军.回归自然的反常态运动[J].医疗保健器具,2006(2):51-52. 被引量:1
  • 7Masumoto K, Takasugi S, Hotta N, et al. A comparison of muscle activity and heart rate response during backward and forward walking on an underwater treadmill [ J ]. Gait & Posture, 2007, 25 ( 2 ) : 222 - 228.
  • 8Masumoto K, Takasugi S, Hotta N, et al. Electromyographic analysis of walking in water in healthy humans [ J]. J Physiol Anthropol, 2004, 23(4): 119- 127.
  • 9Masumoto K, Takasugi S, Hotta N, et al. Muscle activity and heart rate response during backward walking in water and on dry land ~J]. EurJ Appl Physiol, 2005, 94(1 -2): 54-61.
  • 10郝卫亚,陈严.倒走的运动生物力学与生理学研究进展[J].中国运动医学杂志,2008,27(3):390-392. 被引量:6

二级参考文献46

  • 1Terblanche E, Page C, Kroff J, et al. The effect of backward locomotion training on the body composition and cardiorespiratory fitness of young women. Int J Sports Med,2005,26 (3):214-219.
  • 2Clarkson E, Camerson S,Osmon P,et al. Oxygen consumption,heart rate,and rating of perceived exertion in young adult women during backward walking at different speeds. J Orthop Sports Phys Ther, 1997,25 (2) :113 - 118.
  • 3Chaloupka EC, Kang J, Mastrangelo MA,et al. Cardiorespiratory and metabolic responses during Forward and backward walking. J Orthop Sports Phys Ther, 1997,25 (5): 302-306.
  • 4Flynn TW, Connery SM, Smutok MA, et al. Comparison of eardiopulmonary responses to forward and backward walking and running. Med Sei Sports Exere, 1994,26 (1):89-94.
  • 5Eisner WD, Bode SD, Nvland J, et al. Electromyographic timing analysis of forward and backward cycling. Med Sci Sports Exerc, 1999,31 (3):449 - 455.
  • 6Masumoto K, Takasuqi S, Hotta N, et al. A comparison of muscle activity and heart rate response during backward and forward walking on an underwater treadmill. Gait Posture, 2007,25 (2) : 222- 228.
  • 7Flynn TW,Soutas-Little RW. Patellofemoral joint compressive forces in forward and backward running. J Orthop Sports Phys Ther, 1995,21 (5): 277 - 282.
  • 8Cipriani DJ, Armstrong CW, Gaul S. Backward walking at three levels of treadmill inclination., an electromyographic and kinematic analysis. J Orthop Sports Phys Ther, 1995, 22(3):95-102.
  • 9Threlkeld A J, Horn TS, Wojtowicz GM, et al. Kinematics, ground reaction force and muscle balance produced by backward running. J Orthop Sports Phys Ther, 1989, 11 (2): 56-63.
  • 10Steindl R, Kunz K, Schrott-Fischer A, et al. Effect of age and sex on maturation of sensory systems and balance control. Dev Med Child Neurol,2006,48(6) :477-482.

共引文献17

同被引文献24

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部