期刊文献+

三角嵌铺粒子追踪算法的三维化扩展 被引量:2

Extension of the delaunay-tessellation particle tracking algorithm to 3D field
下载PDF
导出
摘要 针对连续帧三维流场粒子的匹配问题,对基于三角嵌铺的粒子追踪算法进行了三维化扩展并将其命名为3DT PTV。3DT PTV遵循从粒子样型匹配到粒子匹配的原则,即粒子匹配结果从粒子样型匹配结果中总结。首先通过自定义"粒子样型DT网格"实现了粒子样型匹配的参数无依赖性,使3DT PTV适用于粒子非均匀分布流场;其次通过自定义"样型唯一性标识向量"进行粒子样型匹配;最终通过"双向计算-概率择优"模块对样型匹配结果进行样本扩展并整合出粒子匹配。通过添加自定义干扰的JPIV人工流场对3DT PTV进行了检验。除了算法本身的简洁性,结果亦证明了3DT PTV处理粒子无匹配率较高的复杂流动的良好特性。 The particle tracking velocimetry (PTV)algorithm based on Delaunay Tessellation (DT), named as 3DT PTV is improved to match particles from two consecutive instants in the three-dimensional field.In 3DT PTV,the particle pairing is summarized out of the pattern pairing,in which a pattern DT grid is adopted in the selection of pattern candidate to enable 3DT PTV free of parameters and applicable in unevenly distributed flow,and a pattern identifying vector is proposed for the pattern similarity judgment. The result of particle pairing is then doubled and refreshed by the processors of “Dual Computation”and“Selection by Probability”.3DT PTV is tested by standard synthetic flows with self-defined perturbations. The merit of 3DT PTV confirmed by the test result is the high accuracy in addressing complex flow with noticeable ratio of particles having no pair.
出处 《空气动力学学报》 CSCD 北大核心 2014年第6期840-847,共8页 Acta Aerodynamica Sinica
基金 国家自然科学基金(11272252 11102153 11402190) 中国博士后科学基金(2014M552443)
关键词 光学测量 粒子追踪 三维流场 粒子匹配 JPIV 人工流场 optical measurement particle tracking three-dimensional flow particle pairing JPIV synthetic flow
  • 相关文献

参考文献27

  • 1WILLERT C,GHARIB M.Digital particle image velocimetry[J].Exp.Fluids,1991,10: 181-93.
  • 2WESTERWEEL J,DABIRI D,GHARIB M.The effect of a discrete window offset on the accuracy of cross correlation analysis of digital PIV recordings[J].Exp.Fluids,1997,23: 20-28.
  • 3ARROYO M P,GREATED C A.Stereoscopic particle image velocimetry[J].Meas.Sci.Technol.,1991,2: 1181-1186.
  • 4SOLOFF S M,ADRIAN R J,LIU Z C.Distortion compensation for generalized stereoscopic particle image velocimetry[J].Meas.Sci.Technol.,1997,8: 1441-1454.
  • 5KAHLER C J,KOMPENHANS C.Fundamentals of multiple plane stereo particle image velocimetry[J].Exp.Fluids,2000,29: 70-77.
  • 6WILLERT C,HASSA C,STOCKHAUSEN G,et al.Combined PIV and DGV applied to a pressurized gas turbine combustion facility[J].Meas.Sci.Technol.,2006,17: 1670-1679.
  • 7MENG H,PAN G,PU Y,et al.Holographic particle image velocimetry: from film to digital recording[J].Meas.Sci.Technol.,2004,15: 673-685..
  • 8VIRANT M,DRACOS T.3D PTV and its application on Lagrangian motion[J].Meas.Sci.Technol.,1997,8: 1539-1552.
  • 9ELSINGA G E,SCARANO F,WIENEKE B,et al.Tomographic particle image velocimetry[J].Exp.Fluid,2006,41: 933-947.
  • 10SCHRODER A,GEISLER R,ELSINGA G,et al.Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time resolved tomographic PIV[J].Exp.Fluids,2008,1: 305-316.

二级参考文献6

  • 1阮晓东,吴锋,杨华勇,山本富士夫.一种自动检测PIV数据中误矢量的算法[J].机械工程学报,2004,40(7):89-92. 被引量:8
  • 2SONG Xiangqun, YAMAMOTO F, IGUCHI M, et al. A new cross correlation algorithm for PIV based on Delaunay tessellation [J].Journal of the Flow Visualization Society of Japan, 1992, 1(2) : 19-22.
  • 3SONG Xiangqun, YAMAMOTO F, IGUCHI M, et al. A new tracking algorithm of PIV and removal of spurious vectors using Delaunay tessellation [J]. Exp Fluids, 1999, 26(4):371-380.
  • 4ASTOLA J, HAAVISTO P, NEUVO Y. Vector median filters[J]. Proc IEEE, 1990, 78(4):678-689.
  • 5WESTERWEEL J. Efficient detection of spurious vectors in particle image velocimetry data [J]. Exp Fluids, 1994, 16(3/4) :236-247.
  • 6WANG Dawei, WANG Yuan, YANG Bin, et al. Statistical analysis of sand grain/bed collision process re- corded by high-speed digital camera [J]. Sedimentology, 2008, 55(2):461-470.

共引文献6

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部