期刊文献+

湍流模型源项的数值处理方法对计算结果的影响研究 被引量:2

Effects of numerical method of source terms in turbulence models
下载PDF
导出
摘要 涡粘性湍流模型广泛应用于各种工程湍流问题的计算。对于大多数湍流模型,在湍流控制方程的右端会出现源项,其刚性给数值计算带来很大的影响。从源项的物理意义出发分析了源项导致求解困难的原因,并在通用的求解湍流模型方程的点隐法基础上,以源项弱刚性的S-A湍流模型和源项强刚性的k-ωSST湍流模型为例,论述了生成项和耗散项之间的平衡关系对数值模拟的重要意义,给出了针对不同源项的具体处理方法。对RAE2882翼型跨声速流动算例的模拟结果表明,这些处理方法有效的提高了控制方程组的计算稳定性。 Eddy viscosity models have been widely used in many engineering applications of turbulence. Usually there are additional source terms on the right side of the turbulent governing equations,which may play an important role in the computation of Navier-Stokes equations.Stiffness that results from source terms is analyzed in details and the significant balance between production term and destruction term is dis-cussed,together with point implicit approach,an universal way to solve equations with source terms.After-wards both S-A turbulence model with weak stiffness and k-ω SST turbulence model with strong one are taken as examples to show the specific treatments concerning about the different source terms between these two.The paper ends with numerical tests of RAE 2822 airfoil transonic flow,which demonstrates that the methods above can overcome the stiffness from the source terms and improve the stability of the computation effectively.
作者 王翔宇 李栋
出处 《空气动力学学报》 CSCD 北大核心 2014年第6期868-873,共6页 Acta Aerodynamica Sinica
基金 国家自然科学基金(11072200)
关键词 NS 方程 源项 刚性 S-A 湍流模型 k-ω SST 数值模拟 Navier Stokes equations source term stiffness S-A turbulence model k-ω SST turbulence model computer simulation airfoils
  • 相关文献

参考文献11

  • 1LI X L,FU D X,MA Y W.Direct numerical simulation of hypersonic boundary layer transition over a blunt cone[J].AIAA Journal,2008,46(11): 2899-2913.
  • 2HUANG P G,COAKLEY T J.An implicit Navier-Stokes code for turbulent flow modeling[R].AIAA 92-0547.
  • 3BLAZEK J.Computational fluid dynamics: principles and applications[M].London: ELSEVIER Science Ltd,2001.
  • 4DU T,WU Z N.Mixed analytical/numerical method for low Reynolds number k epsilon turbulence models[J].AIAA Journal,2004,42: 1140-1153.
  • 5DU T,WU Z N.Mixed analytical/numerical method applied to the high Reynolds number κ-ε turbulence model[J].Computers & Fluids,2005,34(1): 97-119.
  • 6DU T,WU Z N.Mixed analytical/numerical method for flow equations with a source term[J].Computers & Fluids,2003,32(5): 659-690.
  • 7杜涛,吴子牛,杨勇.混合解析/数值方法及其在湍流数值模拟上的应用[J].航空学报,2006,27(2):198-203. 被引量:3
  • 8SPALART P R,ALLMARAS S R.A one-equation turbulence model for aerodynamic flows[R].AIAA 920439.
  • 9COOK P H,MCDONALD M A,FIRMIN M C.Aerofoil RAE 2822 pressure distributions,and boundary layer and wake measurements[R].Experimental Data Base for Computer Program Assessment,AGARD AR 138,1979.
  • 10MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8): 1598-1605.

二级参考文献12

  • 1Roe P L.Upwinding differencing schemes for hyperbolic conservation laws with source terms[A].In:Proc 1st Int Conf for Hyperbolic Problems[C].1986.41-56.
  • 2Greenberg J M,Le Roux A Y.A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[J].SIAM J Num Anal,1996,33:1-16.
  • 3Merci B,Steelant J,Vierendeels J,et al.Computational treatment of source terms in two-equation turbulence models[J].AIAA Journal,2000,38(11):2085-2093.
  • 4Helzel C,Leveque R J,Warnecke G.A modified fractional step method for the accurate approximation of detonation waves[J].SIAM Journal on Scientific Computing,2000,22:1489-1510.
  • 5Mohammadi B,Pironneau O.Analysis of the k-ε turbulence model[M].New York:Wiley Masson,1994.
  • 6Zhao Y.Stable computation of turbulent flow with a low-Reynolds-number k-ε turbulence model and explicit solver[J].Advances in Eng Software,1997,28:487-499.
  • 7Mavriplis D J,Martinelli L.Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model[J].International Journal for Numerical Method in Fluids,1994,18:887-914.
  • 8Du T,Shi J,Wu Z N.Mixed analytical/numerical method for flow equations with a source term[J].Computer & Fluids,2003,32:659-690.
  • 9Du T,Wu Z N.On steady state computation of turbulent flows using k-ε models approximated by the time splitting method[J].Int J for Numierical Methods in Fluids,(accepted).
  • 10Sajben M,Kroutil J C.Effects of initial boundary-layer thickness on transonic diffuser flows[J].AIAA Journal,1981,19:1386-1393.

共引文献2

同被引文献17

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部