期刊文献+

TI介质中地震波旋转运动特性研究 被引量:2

The study on rotational motion of seismic wave in TI media
原文传递
导出
摘要 地震波的旋转运动研究是地球动力学中的一个新兴领域.本文基于弹性波理论推导出旋转速度与相速度的关系,通过Kelvin-Christoffel方程推导了TI介质中地震波相速度的计算公式,从而得到TI介质中的Thomsen参数与旋转速度之间关系;继而借助于几个典型的TI介质模型模拟了地震波旋转运动.模拟结果显示:qP波旋转速度随着ε、δ的增加逐渐增大;qSV波旋转速度随着ε的增大而减小,随δ增大而增大;qSH波旋转速度随γ、δ的增加而增大,且γ的影响更大.另外,从相速度与旋转速度对比发现:qP波和qSH波旋转速度即不是圆形也不是椭圆,相对于相速度更具有方向性,这说明相对于平移运动,旋转运动的信息更有方向性和各向异性. Rotational motion of seismic wave is an emerging field of geodynamics.Based on elastic wave theory,this paper derived the relationship between rotation rate and phase velocity,and obtained the phase velocity of seismic wave in TI medium by solving Kelvin-Christoffel equation and relationship between Thomsen parameters of the elastic medium and rotation rate.We computed the peak rotation rates and phase velocity of qP-waves,qSV-waves,qSH-waves generated in different TI materials.The result indicate that qP rotation rates are higher with increasing values ofεandδ,qSH rotation rates are higher with increasing values ofγandδ,qSV rotation rates are higher with increasing values ofδ but decrease with increasing values ofε.Through the comparison of the phase velocity and rotational rate,pointed out rotational motion has better directivity and anisotropy than translation motion.
出处 《地球物理学进展》 CSCD 北大核心 2014年第6期2609-2613,共5页 Progress in Geophysics
基金 国家自然科学基金(41274070 41174075 41074033 41174043 40804017) 国家科技专项项目(SinoProbe02-02-02) 广西自然科学基金(2013GXNSFAA019271) 广西壮族自治区"八桂学者"(2013) 广西壮族自治区桂林市"漓江学者"(2013)专项经费联合资助
关键词 TI介质 THOMSEN参数 旋转速度 Kelvin-Christoffel方程 相速度 TI media Thomsen parameters rotational velocity Kelvin-Christoffel equation phase velocity
  • 相关文献

参考文献19

  • 1Bouchon M, Aki K. 1982. Strain, tilt, and rotation associated with strong ground motion in the vicinity of earthquake faults [J]. Bull. Seismol. SOc. Am. , 72(5): 1717-1738.
  • 2Droste Z, Teisseyre R. 1976. Rotational and displacemental components of ground motion as deduced from data of the azimuth system of seismograph[J]. Publ. Inst. Geophys. Pol. Acad. Sci. , 97: 157-167.
  • 3Ferrari G. 2006. Note on the historical rotation seismographs[A]. //Teisseyre R, Takeo M, Majewski E, eds. Earthquake Source Asymmetry, Structural Media and Rotation Effects[ M]. Berlin, Heidelberg: Springer-Verlag, 367-376.
  • 4Galitzin B B. 1912. Lectures on Seismometry, Russian Acad. Sci. , St. Petersburg (in Russian).
  • 5Guguen Y, Sarout J. 2009. Crack-induced anisotropy in crustalrocks: predicted dry and fluid-saturated Thomsens parameters [J]. Physics of the Earth and Planetary Interiors, 172(1-2) 116-124.
  • 6Kharin D A, Simonov L I. 1969. VBPP seismometer for separate registration of translational motion and rotations[J]. Seismic Instruments, 5:51-66 (in Russian).
  • 7Lee V W, Trifunac M D. 1987. Rocking strong earthquake accelerations[J]. Soil Dyn. Earthq. Eng. , 6(2) : 75-89.
  • 8Lee W H K, Huang B S, Langston C A, et al. 2009. Review: progress in rotational ground-motion observations from explosions and local earthquakes in Taiwan[J]. Bull. Seismol. Soc. Am+ , 99(2B): 958-967.
  • 9Majewski E. 2006. Seismic rotation waves: spin and twist solitons [A]. //Teisseyre R, Takeo M, Majewski E, eds. Earthquake Source Asymmetry, Structural Media and Rotation Effects[M]. Berlin, Heidelberg: Springer-Verlag, 255-272.
  • 10Mallet R. 1862. Great Neapolitan Earthquake of 1857 [M]. London: Chapman and Hall.

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部