摘要
针对热轧圆钢的轧制批量计划编制问题,以热轧圆钢的需求为导向,综合考虑热轧和加热炉阶段的工艺要求,建立了以最小化钢坯余料浪费惩罚和相邻钢坯间跳跃惩罚为目标的数学模型,并基于约束满足技术设计求解算法。算法通过变量选择和值选择规则对待轧制钢坯进行选择、分组和序列生成操作;通过约束传播技术缩减搜索空间,并划分轧制单元;同时,将装箱启发式Best Fit Decreasing(BFD)嵌入到算法中,以优化钢坯余料浪费惩罚和钢坯属性跳跃惩罚。基于实际生产数据的仿真实验表明了模型和算法的可行性和有效性。
According to the demand of hot-rolled bar steel products and the requirement of reheating and hot-rolling production, a hot-rolling batch planning problem is studied. A mathematic model is built with two optimization objectives, the minimization of total surplus length and the billet bounce cost. Based on the model, an algorithm based on constraint satisfaction technique is present with variable selection rules and value selection rules for billet selecting,grouping and sequencing, and constraint propagation for searching-space reducing and rolling-unit partitioning. Meanwhile, Best Fit Decreasing (BFD) heuristic is embedded into the algorithm to optimize the two objectives. The simulation experiments with practical production data demonstrate the feasibility and effectiveness of the model and algorithm.
出处
《工业工程与管理》
CSSCI
北大核心
2014年第6期44-50,共7页
Industrial Engineering and Management
基金
国家自然科学基金资助项目(71231001)
中央高校基本科研业务费专项资金资助(FRF-SD-12-011B
FRF-SD-12-012B)
教育部博士学科点专项科研基金(20100006110006)
关键词
批量计划
热轧圆钢
约束满足
装箱问题
Batch planning
hot-rolled bar
constraint satisfaction
bin packing problem